

Development of novel GPR prototypes for the evaluation of asphalt properties

Prof. Terhi Pellinen, PhD student Ari Hartikainen Department of Civil Engineering Prof. Pekka Eskelinen Department of Electrical Engineering and Automation

COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar" 25-27.9.2017, Final Conference of the Action National Institute of Telecommunications of Poland, Warsaw, Poland

Outline

RVE for asphalt Types of radars developed in Finland Field Tests Calibration of radars

X-Ray scans of asphalt

Lab Compaction Trial

Gyratory compacted specimens

Aalto University School of Engineering

S.10.2017 12

Asphalt inhomogeneity

- Common study scheme is to take physical core samples from the road and measure the air void content in the laboratory
 - Expensive, slow
 - Independent samples \rightarrow Statistical QC/QA
- Non-destructive (GPR) methods are faster and have a greater spatial coverage longitudinally
 - Cheap, fast
 - Point accuracy is less than with the laboratory measurements
 - Autocorrelation

Beam width, antenna footprint

School of Engineering

- The wavelength of the microwave signal must be much shorter than the sample thickness in order to be able to distinguish between multiple reflections.
- As a bonus we get very good spatial resolution along the surface.
- For example, the granularity of asphalt can be seen at frequencies above 10 GHz.

Representative Volume Element (RVE)

Pellinen T., Huuskonen-Snicker E. and Eskelinen P. 2015a. Representative volume element of asphalt pavement for electromagnetic measurements, Journal of Traffic and Transportation Engineering (English Edition), Special Issue: Functional Pavement Materials and Characterization, Volume 2, Issue 1, Pages 30–39.

Transmission through sample Lab VNA measurements

S samples

▲L samples 1-9

×L samples 10-18

XL samples 20-27

Average L1-9, L10-18, L20-27

 $\sqrt{\varepsilon_{eff}} = \sum \sqrt{\varepsilon_i} V_i$

Aalto University **School of Engineering**

5.10.2017 16 **EUROPEAN COOPERATION** IN SCIENCE & TECHNOLOGY

Cavity resonator

Eskelinen, P. (2016). A Simple Permittivity Calibration Method for GPR-Based Road Pavement Measurements. Frequenz, Vol 70, Issue 9-10 (Sep 2016).

Measurements 1-2 GHz frequency.

For CR method repeatability is 0.02 units of permittivity, when measuring the same sample repeatedly.

EM Transverse modes in CR

Modelling

Eeff

 $\varepsilon_{r,eff}' = \left[\sum V_i (\varepsilon_{r,i}')^{\alpha}\right]^{\frac{1}{\alpha}}$

With the correlation coefficient R^2 of 0.99, the data fitting gave α a value of 0.375.

 ${\rm TM}_{\rm 010}~\alpha$ was 0,48

Types of radars

Own radar configurations

- a) a continuous-wave frequency sweeping (FMCW) 1-2 GHz system, partly similar to Zych (2011),
- b) a 12-18 GHz FM device described in detail in Huuskonen-Snicker et al. (2015)
- c) a 32 GHz fixed frequency system.

Both the 1-2 GHz and 12-18 GHz devices utilize inverse FFT to get the time domain reflection response of the pavement surface.

After this, basic reflection coefficient calculus (Ramo and Whinnery 1960) is applied to get the air-asphalt interface permittivity at the correct time window, the location of which is now automated from the raw IFFT plot.

12-18 GHz

Huuskonen-Snicker, Eeva; Eskelinen, Pekka; Pellinen, Terhi; Olkkonen, Martta-Kaisa, (2015) A New Microwave Asphalt Radar Rover for Thin Surface Civil Engineering Applications, FREQUENZ, Vol 69, Issue 7-8 (2015).

Figure 4. Ready asphalt radar rover on the street. The two monopole antennas are for vehicle <u>telecommand</u> and for radar telemetry. Radar antennas point towards the road in the front of the car.

Radar unit block diagram. Amplitude information is obtained from an envelope detector. The cosine of the phase angle comes by the low pass filtering the DBM output.

School of Engineering

12-18 GHz

 Table 1. Radar characteristics

Frequency range	12-18 GHz		
Transmitter power	>+10 dBm		
Receiver noise figure	< 3dB		
Receiver 1 dB compression point	0 dBm		
Sweep time	< 12 ms (depends on communication port)		
A/D resolution	10 bits		
Antennas	2 x 2 dBi		
Polarization	linear		

Example of antenna focusing arrangement, here applied at 32 GHz.

Field Tests

Field trial of 4 radars

- Standard commercial 2 GHz GPR data, obtained with SIR-30 system from GSSI Inc (USA) was selected as reference for the remaining three devices.
- Main GPR parameters were as follows: measurement time 20 ns, sweep count 1024 samples, sweep rate 500 scans/s, data width 32 bits.
- Test road 250 m, 4 different pavement sections.

Test Road, variable AC thickness

-

18.09.2015 21:20

D/ 6

Back-calculated "stone" permittivity using CRIM model

Core Nro	Pavement Section	32 GHz median of max. (1m)	12-18 GHz	1-2 GHz	GPR
1	А	4.52	5.11	4.04	6.07
2	А	5.89	6.13	6.38	5.77
3	В	5.62	5.86	7.12	5.74
4	В	5.16	6.37	4.88	6.37
5	С	4.97	5.41	4.39	6.45
6	D	5.82	6.01	4.19	5.15
	Average	5.33	5.82	5.16	5.92
	St. Deviation	0.54	0.47	1.28	0.48

Estimated air voids using discrete modeling

Calibration of radars

Aalto University School of Engineering S.10.2017 SCIENCE & TECHNOLOGY 36

Simulation of sensitivity

Mix segregation

Vt1: ε_r' = 4,5 Vt3: ε_r' = 5,3 Vt4: ε_r' = 5,8

Bit% ± 0,5 mass-%

Stone variation of ϵ_r ' ±0,20

Road cores

Max density vs. permittivity from GPR

GPR vs. lab measurements

Statistical modeling

The modelling is divided to 3 steps

- 1. Material model
- 2. Multivariate Normal approximation step
- 3. Conditional Gaussian method

Results – Estimation of air void content

- Each measured point is modelled as a distribution (Normal) which means that with survival function we can calculate how much of the representative distance is over specified limit
- With this method a probabilistic estimate of total percent of distance over the limit can be calculated

Thank you

Questions related to the development of radar systems: pekka.eskelinen@aalto.fi

Field sampling included 37 drilled core **Samples and 2 slabs** GPR measurements from same locations

Aalto University School of Engineering

Aalto University School of Engineering

Lab trials with VNA

Aalto University School of Engineering

First results of laboratory measurements (7-17 GHz)

5.10.2017 48

φ100 mm, S

Laboratory vs. Field Location 1

Permittivity measured 2014 with VNA

▲L samples 1-9 ×L samples 10-18 *L samples 20-27 ●Average L1-9, L10-18, L20-27

Measuring air voids in the lab

Bulk G_{mb} and maximum G_{mm} densities measured in laboratory

Air void content V_a [%]

$$V_a = \left(1 - \frac{G_{mb}}{G_{mm}}\right) \cdot 100\%$$

DRY, SSD, PARAFILM, DIM

Maximum density --- no air $V_a = \left(1 - \frac{G_{mb}}{G_{mm}}\right) \cdot 100\%$

Aalto University School of Engineering

Mix types

	AC	SMA	ΡΑ	MA
DRY	х	(x)	-	х
SSD	(-)	Х	-	(x)
PARAF	х	Х	Х	х
DIM	(x)	(x)	Х	(x)

Fig. 4 Asphalt mixture types and their aggregate packing arrangements.

Aalto University School of Engineering

Experiment using Gyratory compaction

Three mixture types: AC16, SMA16, PA16 Maximum compaction: 15 to 800 gyrations One aggregate source: granite

Mixture	Bit.	LS	Stone	0-8 mm,	8-16 mm,	Fiber
	m-%	m-%	m-%	m-%	m-%	m-%
SMA16	6,0	7,5	92,5	20,5	72	0,4
AC16	5,1	2,0	98,0	65,0	33	-
PA16	4,5	0,0	100,0	22	78	-

Calibration equation?

- > No bitumen content variation
- > No aggregate variation

- Normal production bitumen content variation
- > Normal aggregate source variation

Results for permittivity

Aalto University School of Engineering

Air voids vs. permittivity

Aalto University School of Engineering

Literature

AC 9,5 mm and AC12,5 mm

- The GPR was found to be an effective tool for assessing the compaction level in asphalt pavements.
- There was an excellent correlation between GPR air void distribution maps and the air-void maps generated from density measurements of extracted cores.
- This application of GPR is useful to obtain maps of air voids in asphalt pavements at relatively low cost and without causing interference to traffic.

0

C

0 0

0

School of Engineering

5.10.2017 59

81

 ϵ_2

