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Vector wave equation

The wave equation in free space (eventually lossy!)

0*C ocC

2 - —_ _ =
v-C Heoa — KO- 0

Where C represents a generic electromagnetic field.

In the frequency domain, in the most general case:
VV-C—-VxVxC+kEC=0

Unfortunately, the solution of such equation is not easy at all!
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Scalar wave equation

On the other hand, the scalar equation:
V2 + k) =0
Is very easy to solve, at least in “simple” coordinate systems

Examples:

. Cartesian  AelET 4 Be JET
. cylindrical [AJ (kyp) + BY,,(k,p)] e Im? ek
« Spherical [Aj-n(k‘r) N Byn(kr)] _’?mdjpm (COb 9)
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Vector wave equation

Exists a really clever way to obtain the solution of the vector wave

equation, starting from the scalar one!

Let us define the following vectors:

.-r_l

L=V M =V x (ay)) A . Vx M

Where ¥/ represents a solution of the scalar wave equation, and dj is a
constant vector.

Each of these vectors is a solution of the vector wave equation!
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Precious properties

1

L=V M =V x (ay)) N = kv x M
These vector functions have very important properties:
1 2 2
JIZEQ}{:\T V-L=V"=—-k%
VxL=0 V-M=20 V-N=0
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Series expansion

As it is well known, a set of solutions of the scalar wave equation

(eigenvectors) forms a base of the L? space.

At this set, it Is associated a set of vector, and any vector function

would be written as a superposition of such vectors.

If, for example, we consider the magnetic vector potential AI

('ﬂnﬁn _|_ bﬂ-ﬁn _I_ C‘HLH)
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Field expansion

ﬂnﬁn + bnﬁn + Cn Ln)
W 2 -

If now we consider the electric and magnetic fields:

1
:?xé EFE=—-—VxH

WE

Hence:
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Field expansion

{Inﬁn —I_ b?tﬁn —|_ C‘HLH)

Mpt —

If now we consider the electric and magnetic fields:

1
=V x A E=-——VxH

WE

Hence: ﬂv x L =0

+oC
E — Z (ﬂ'nﬂn + bnﬁn)

(ﬂﬂﬁn T bﬂﬁn)
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Field expansion

1 100
= E {Ininlfjfn_ —I_ bnﬁn —|_ C‘HL?L)
UJ
n=>0

If now we consider the electric and magnetic fields:

1
=V x A E=-——VxH

WE

Hence:
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Complex but simple

(7%

E — (ﬂ'nﬂn an bﬂ-ﬁn)
n=>0
S~
H—_ WN b, M
= iwﬁ; (n o+ 00 0)

We must recall that the functions M and N are known by the simple

solution of the scalar wave equation. The only unknowns are the

expansions’ coefficients!
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Complex but simple

E—

Mé‘

(anM,, +b,N,,)

n=>0

- i Z ﬂnﬁﬂ + bﬂﬁn)
U.J —

“Mathematics, rightly viewed, possesses not only truth, but supreme
beauty — a beauty cold and austere, like that of sculpture...”

B. Russel
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Plane waves

Y(r) = e™*

We can easily obtain the vector functions:

L =k M = ik X a, N = %1* (kX ay) X k

But we can consider plane-wave spectrum:

+oo  ptoo
U(r) = / / gk, ky)e@'idkm dk, = / / g(o, B)eErdadps
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Plane-wave spectrum

Inserting the vector functions expressions in the integral:

?// (v, B)k(ov, B)e™ETdBda
M // o, Bk(a, B) x age™dBda

A / / g(a. B)[k(ev, B) x ag] x k(a, B)e™*dfda

N

We have, for free, the plane-wave spectra of such functions!
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Spherical coordinates

The solution of the scalar wave equation in spherical coordinates can be

written as follows:

Un (1) = Dz, (kr)P™(cos f)e™™?

Where Z,, represents a generic spherical Bessel function, hence:

- . - i OP"(cos®) .
Mo = sing (k) By (cos 0)e™ 0y — 2, (k) of " Q(BG
N = #m (n + 1)Pm(CUS 9) mm Ty
.
L Ofrza(kr)] 0P L Ofrzp(kr)] im |
I ??lff) P?H e m E'I.J'
T Loy Ir (-)9 O + kr Jr sin 6/ %o
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Auxiliary functions

Let us introduce the following functions:

. Pr? (COS 9)
nmn(@) —m sin @
~ dP™(cosh)
fm'll(g) o dlg

Then, we can define the so-called vector tesseral functions:

m,.., (9 CD) — E"imo |:?' NTmn (9)9[} — Tm-n(g)ffj-]
p._(0.0)= e n(n + 1) P (cosf)ry
,mn(fg Q) — Ejﬂhﬂ |:Tm,n,(9)ﬁ{] —I_ ?Wﬂiﬂ(g)c_ﬁu]
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Precious properties

The vector tesseral functions are orthogonal.

2T
/ / m,. 1 sinfdido =

2T pw
_ | nn+1)(n+m)! . _
/ / My m-::n’-n.’ S 9d9d© = 4m 9. 1 ( __ Tomm*’onn"
o Jo n+1 (n—m)!

27
/ / —”?n " omint 5111 ngd(:) — _lT n(n i ) (n i rn) Omm*’on.n’
2n+1 (n—m)!
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“Simpler” expressions

Thanks to the vector tesseral functions:

M, (r,0,0)=z,(p)m, (0.0)

Tﬁ‘ﬂ(

z 10 pz
Nl 8.0) = 2y (g gy L=, )
p = p Op

The kind of the spherical Bessel function involved depends on the
particular field we are considering. For plane waves, because its
stationary behaviour, we would choose the spherical Bessel function of

first kind, while for the scattered wave by a sphere, we would choose the

spherical Hankel function of first type (second type if you use -j)
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Scattering problem: buried sphere

* Incident plane wave

» Reflected plane wave

« Transmitted plane wave
« Scattered wave

* [nternal wave

 Scattered-reflected wave

 Scattered-transmitted wave
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Plane waves: spherical coordinates

=\L _po

We get:
3 a0 + b N0
n=0 m=—n

with:

n+1 (n—m)! |
. (n rn) Epol mmn(fgi: C)i)

n(n—+1)(n+m)!7"

 2n+1 (n—m)!

Amn — ( _ 1 ) m ? i

Dyry = (—1)™2" 7 o (Oi,0;)

n(n+1)(n+m)! Epot * Linn
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Incident and transmitted wave

Ei (I—) — € OIEJ (Eﬂsgﬂr T EmsO ) tjiﬁﬁ

thkoh cos 6 12 12 .- ik, -
Ly (r) = ™o (TH Eoitly, + 15 Egpicp t) et

Hence:

> > Uy M niij*t( ) + binn A-"T,g_;l_ (1)

n= G m=—
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Incident and transmitted wave

Ei (I—) — € OIEJ (Eﬂsgﬂr T EmsO ) fjiﬁr_

thkoh cos 6 12 712 / ik.r
Ly (r) = ™o (TH Eoitly, + 15 Egpicp t) et

\ The coefficients must computed with
Hence:

the right polarization constant!

> > Uy M niij*t( ) + binn A-"T,g_;l_ (1)

n= G m=—

TU1208 Training School in Split ~ 11/11/2016




Scattered wave

> > mn 1[?321( ) _l_ fﬂ’lﬂ* mgz,( )

n=>0 m=—

As usual, the scattering problem reduces to found

the expansions’ coefficients

The scattered wave interacts with the planar interface

We must found the plane-wave spectrum of the vector functions
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Back to the functions

Thanks to the beautiful properties of the vector tesseral functions, we have,

for free, such plane-wave expansions:

27T

-?r -
5 120

m, (o, B)e™=sin adadf3

—mnn

M) =

QW

27

—300

in,,. (. 3)eELsin adod 3

—mn

N =
2!1
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Scattered-reflected

Considering the reflection of each plane wave of the spectrum of the

scattered wave and by an integral superposition, we get:

n 2 p5—ico 2w pg—ico
£0=3 3 e [ [ Eetaaas g [ [T e inis

n=0 m=—n

With:
mn imB | 21 \o | 2ikshcosa
L pe = & s1T1 v RH ?Tm-n,( )&{]T — RE Tﬂl.ﬂ(ﬂ)ﬁu'}“ e
mmn imﬂ - 21 AW | 2ikah cos a
Err = Sin o RH Tmn (), + iRy ’?Tm-n(ﬂjﬁu_r e
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Scattered-reflected wave

Considering the reflection of each plane wave of the spectrum of the

scattered wave and by an integral superposition, we get:

m
2

T 2w — 100 2 ——mo
E_( Z Z o0 { / / E:E‘kr ’"d&dﬁJrfmnf / ERfe ’"dcxdﬁ}

n=0 m=—n

With:
mn imB | 21 \o | 2ikshcosa
Lipe — e S1I1 v TRH ?Tm-n,( )&{]T — RE Tqun( )EDT‘ €
mmn imﬂ / | Qz’kg h cos o

We lost the vector tesseral functions, because the two polarizations are differently reflected!
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Scattered-transmitted wave

Similarly, for the scattered-transmitted wave:

- 2 ——mo D T im0
Z Z {f‘mn / f _!L"_me1 ,ik rdﬂdﬁ + fmnf /2 ETf EER Td{'}:d;g}
0 JoO

n=0 m=—n

With:
min imﬁ .21 . | —ikohcosa _—ikh cos aq
Er) = sin oy 117 Tmn () g, — TE Tﬂm(at)gm : €
mmn m3 _: 21 , | —ikohcosa _—ikyh cos o
Er; = = P sin ay TH Tmn () g, + 115 ?rm.n(at)gm € e ¢
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Internal wave to the sphere

Inside the sphere we have another unknown field. It is a stationary wave,

SO we can obtain it as an expansion with the spherical Bessel functions of

the first kind:

E,( z Z v, M (r)+w, N (r)

n=1 m=—n

The coefficients of this expansion are other unknowns of our scattering

problem.
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Boundary conditions

If we consider the simple case of a PEC buried sphere:

(E +E _I_ESF")XEO B :0
Else, if the sphere is dielectric:
E,+E,+E,—E, )xr, =0
_VX(E +LE + L - ESP)]XKO =0
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Next problem

The boundary conditions are on the surface of the sphere

However, the scattered-reflected field is expressed as

a plane-wave expansion!

We need to expand again the elementary plane waves within the integral

In a series of spherical harmonics:

E,()=33 [M(r{i e, +LW,D£3]+NM<F)[ZT _ZnemGﬁ: +LMH£3H

g=1 p=yq =1 m=—n =1 m=
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Next problem (2)

E,(r)=3Y {Mmm[i S e, 2+ mD;ii}Npq(r)[i _ZnemGii +ﬁmH£zﬂ

g=1 p=y¢q =1 m=—n =1 m=

The capital C, D, G, and H contain the integrals and

they are known quantities

21 ——mcu
crn — '— / o, B)dadp3
The constants € and d, and, g and h,
2"* ——mo
D,y = g i /D dpy (v, B)dad3 are the expansion coefficients
| j—m [2m pgmice relevant to the elementary plane
Goy = = / Gpq (v, B)dadf
waves In the integrals multiplied by

iy 2.
T — i

0
/ﬂ iy (@, B)dad  coefficients e and f, respectively

27
- —71 2
1
Hﬂm _
pq 27 Jo
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Solution

Imposition of the boundary conditions drive us to the following matrix form:

-1

o m e GPA S Ja(ksa) 0 g
T ) " k) .
/, W) | o P () 0 —a
min B mp " ng jn (kza) mn mH mp -~ ng jn (k?_a) pq
- k. . F.a
vmn Drig mp ~ ng "](“1)( 2a) ‘I‘anﬁ 0 5mp5nq ‘{”( Sa) _bpq
h,” (k,a) j.(k,a)
W, ) D Jn(10) | e 0 5,8, L&D || p
PO () v ka) )

The solution of the system has been obtain thanks to

a LU decomposition of the matrix
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Solution (2)

For what concerns the integrals, they present an integration path on the

complex plane, being angular spectra:

— | )
Con=1""(CD" ;(z :j) g N ;;l 5pr;frf (cosax,)m;(cosar,) — Rt (cosax, )ri(cos e, )] sina,e”™ % do_dp,
. 0

We written the integral as a sum of two integrals with reals integration paths

T
LA I, = J.02 f(cosa)e " sin a da
I — J.2 uf(COS a)eﬂqcosa Sil'la da
0

T

——fw . . +o0 Dau
I, = '[Ez f(cosa)e** sina da —_— I, = Io f(iu)e 2qu g

2

In this way, both the integrals are computable with

a Gauss-Legendre quadrature algorithm
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Truncation criteria

By a careful analysis of the convergence behaviour of the coefficients,
we noted that the convergence does not depend only on the sphere’s

radius, but it depends also on the incident angle.
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Truncation criteria (2)

By a careful analysis of the convergence behaviour of the coefficients,
we noted that the convergence does not depend only on the sphere’s
radius, but it depends also on the incident angle.

Coefficients in a
logarithmic scale

N

llog,qie,, I

l=n(n+1)+m

& W criterion
=90 ©  Our criterion when ei=1:I4
a  Qur criterion when Bi=m'2

100 I I I
0 20 40 60 80 100 120 140

11/11/2016
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Truncation criteria (3)
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Results

Validation by
comparisons with
the literature and

with a FEM method
(normal incidence)

[vim]
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- Matlab Code
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Results (2)

Validation by comparisons with a FEM method
(oblique incidence)
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Extensions

Sphere below a stratified media Sphere inside a stratified media
y ) \ kr'/ i , ,
AN R f
| A o/
\ h [

3
H3
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Conclusions

« We saw how the vector wave equation can be solved with the solution of the

scalar wave equation
» The spherical harmonics have been obtained and written in a simple form

« The problem of the scattering by a dielectric sphere buried in a ground has been

faced
« The numerical aspects of the problem have been considered

« Validations through the literature and other numerical methods have been

presented
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