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Scattering by buried cylindrical objects

Flat interface between lossless media

1) Homogeneous, isotropic, lossless media

2) Dielectric cylinders with different radii

3) Arbitrarily large number of cylinders

4) High computational precision 

5) Fast evaluation 
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Scattering by buried cylindrical objects (2)
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Stratified media

1) Homogeneous, isotropic, lossless media

2) Dielectric cylinders with different radii

3) Arbitrarily large number of cylinders

4) High computational precision 

5) Fast evaluation 

6) Arbitrary stratification
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Scattering by buried cylindrical objects (3)
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Rough Surfaces

1) Homogeneous, isotropic, lossless media

2) Dielectric cylinders with different radii

3) Arbitrarily large number of cylinders

4) High computational precision 

5) Fast evaluation 

6) Arbitrary stratification

7) Arbitrary shape of the interface
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Scattering by buried cylindrical objects (4)
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LOSSY MEDIA?
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Cylindrical wave expansions

TU1208 Training School in Split

   0 2,   m jm jm

t m

m

V V j e J k e   


 



 

   
0, x yj k x k y

tV x y V e
 



     cos cos sin sin cos

0 0,
jk jk

tV V e V e
       

 
   

 

Transmitted wave:
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Cylindrical wave expansions
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Transmitted wave:

The scattered wave can be expanded in cylindrical waves as well

We can work with the scalar potential 

because the problem is 2D
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Cylindrical wave expansions (2)
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   (2)
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The problem reduces to the determination of the coefficients 
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Cylindrical wave expansions (2)
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Cylindrical wave expansions (3)
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[ ] 0       for E-polarizationt s sr aV V V   

Boundary conditions for the determination of the unknown coefficients:

[ ] 0       for H-polarizationt s sr aV V V 





  



Thanks to the orthogonality of the imaginary exponential, 

these conditions become an infinite set of linear equations

By an efficient truncation criterion, it is possible to find a finite number of coefficients 

to accurately describe the scattered field

At this point the analytical formulation is complete, 

and the solution of the fields becomes a purely numerical problem
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Cylindrical wave expansions (4)
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The main numerical effort is in the computation of the reflected and transmitted waves:

The kernel of the integrals presents  an highly oscillating behavior
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Considering the cylindrical wave spectrum:
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The imaginary exponential, while its exponent is purely imaginary, varies very fast with yn
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Special quadrature algorithm

TU1208 Training School in Split

To efficiently compute the integrals, a special quadrature algorithm has been proposed

In the lossless case, by a change of variable in the integral, i.e, 
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Calling , in the interval , where the kernel presents the fastest oscillations cosyn t  1yn 
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The oscillating term becomes harmonic, and its local frequency can be analytically determined
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Special quadrature algorithm (2)
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 
2exp sin  j

,
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m

j t mt
F t

t




    

Knowing the local frequency, it is possible to build a quadrature algorithm where the 

function is divided in non-oscillating intervals: 
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Lossy media
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The good news is that in the lossy media 

the cylindrical wave approach works in the same way!

The bad news is that in the lossy media 

the numerical computation of the integrals diverges! 

Why?
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Lossy media
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The good news is that in the lossy media 

the cylindrical wave approach works in the same way!

The bad news is that in the lossy media 

the numerical computation of the integrals diverges! 

Why?

From an analytical point of view the functions and the integrals 

can be extended in the complex plane without any problem

Analytically the integrals should converge, as well as in the lossless case, 

but when they are computed with the numerical algorithm, they diverge
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A convergence problem
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The solution to the problem was trivial, but captious!

It starts from the change of variables inside the integrals, and in particular in 2/y yn n n

In the lossless case,        is a real quantity, then the change of variable is innocent! 2n

In the lossy case,      is a complex quantity, changing the convergence domain of the 

integral. 
2n

Considering the spectrum of the cylindrical wave:  
 2 2
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

We can compute its convergence domain on the complex plane!
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Convergence domain
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The real axis is entirely 

contained 

in the convergence domain
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When the change of variable is implemented, 

the convergence domain is clockwise rotated, and 

the real axis is not anymore contained
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Convergence solution
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The conclusion is that in the lossy case we cannot implement the change of variable

We must integrate the function in its original form:

The local frequency cannot be computed analytically!

We built a numerical code to find the zeros of the exponent, in order to 

numerically compute the local frequency of the exponential function

The CWA started to work in lossy media.

However, the code is slower than the one in the lossless case.
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Convergence solution (2)
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Convergence of the scattering coefficients vs conductivity
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Comparisons
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Comparisons with the literature and with a Finite Element Method (FEM)

Solid line: literature

Dashed line: FEM (Comsol Multiphysics 4.2)

Circles: numerical code
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Comparisons (2)
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Comparisons with a Finite Element Method (FEM)

Solid line: FEM Circles: numerical code
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Cylinders interactions
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Solid line: with interactions

Circles: without interactions

Lossless case Lossy case

a = 0.04 μm,  h = 0.08 μm, d = 0.16 μm, ε2 = 8.7 - j1.2 (SiC) and εc = 1.44 - j1.3 (Ag) at λ0 = 0.3 μm
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Cylinders array
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a = 0.04 μm,  h = 0.08 μm, ε2 = 8.7 - j1.2 (SiC) and εc = 1.44 - j1.3 (Ag) at λ0 = 0.3 μm

Solid line: FEM Circles: numerical code
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Alternative approach

TU1208 Training School in Split

The solution found presents several limitations:

1. The accuracy decreases when the losses increases

2. The accuracy decreases when the number of cylinders increases

3. Higher is the conductivity, slower is the code

Alternative approach?

Let us come back again to the integral:

       21
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Are we able to compute it analytically?
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Integral kernel
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If we look inside the integral kernel:

       21
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 
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We find extremely complicated expressions!
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Image principle
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Try to think different!

mRWmCW
mCW

1 12
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Fresnel coefficients
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?
It is not possible         has two polar 

singularities  in   the   complex   plane.

Conformal mapping 
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    
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
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Fresnel coefficients
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  2 arccos

21 2

0

yj n

y k

k

R n e
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





Solid line: series truncated at the 10th element
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Because the absolute value, 

we must split the integral into two!
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The analytical solution
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Let us define the following integral:

   
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The analytical solution
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Let us define the following integral:
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This integral can be solved analytically!
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The analytical solution (2)
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   
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1
, , exp[ j n ]dn
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This integral is closely correlated with the Sommerfeld integral

   
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Posing sinyn t

Now we can solve the integral on the real and 

on the imaginary axis separately
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The analytical solution (2)
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Posing sinyn t

Now we can solve the integral on the real and 

on the imaginary axis separately

t is complex!
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The analytical solution (3)
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On the real axis:

   
2

,exp[ j cost j ]d
m
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  
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Where              is the Associate Anger-Weber function, solution of the inhomogeneous Bessel 

differential equation

On the imaginary axis:

 
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 

 4 2

,

2
sinh

4 2 4 2

j m p
m p

m pa j e m p

 
   
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     

    
       

    
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Numerical results

TU1208 Training School in Split

Amplitude of the RW of order 0, when medium 1 is a vacuum and medium 2 has relative

permittivity 10. The RW is computed in ρ = 5 (a), and in ρ = 30 (b). Analytical method (solid line).

Numerical method (circles (a), dashed line (b)).
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Numerical results (2)
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Amplitude of the RW of order 0, when medium 1 is a vacuum and medium 2 has relative

permittivity 10. The RW is computed in ρ = 0.6 (a), and in ρ = 0.3 (b). Analytical method (solid

line). Numerical method (dashed line).
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Conclusions

• The Cylindrical Wave Approach has been presented in the case of lossless media

• The convergence problems arise in lossy media has been presented

• A first numerical solution to the convergence problem has been proposed

• Limitations of the numerical solutions have been pointed out

• A power expansion of the Fresnel reflection coefficients have been presented

• The analytical solution, valid in the whole complex plane, to the reflected

cylindrical wave has been derived
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