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Talk	Outline	

§  Theore@cal	Method	

§  Numerical	Solu@on	

§  Results	and	Applica@ons	

§  Conclusions	and	Work	in	Progress	



CWA:	Theore(cal	Method	

	

§ Monochroma@c	or	pulsed	plane-wave		

§  Line	sources	of	current	or	arbitrary	2D	field	distribu@on	
	

	

CWA:	Analy(cal-numerical	technique	for	the	solu(on	of	the	direct		
two-dimensional	scaWering	problem	by	a	finite	set	of	buried	cylinders	
	

Buried	Objects		

§  Perfectly-conduc@ng	or	dielectric	circular	cylinders	
§  ScaNerers	with	arbitrary	cross-sec@on,	simulated	by	a	
suitable	configura@on	of	circular	cylinders	

	

Host	medium	

Source	

	

§  Linear,	isotropic,	dielectric,	half-space		
or	finite-thickness	slab		

Lossless	materials	in	this	presenta@on,		
			Nicola	will	explain	how	to	deal	with	losses!	



CWA:	Theore(cal	Method	

§  Arbitrary radii, burial depths, and 
distances between the obstacles 

 

§  All the cylinder-cylinder 
interactions, and the multiple 
reflections between the cylinders 
and the interface, are considered 

§  Results in near- and far-field 
zones, E and H polarization 

Monochroma(c	plane-wave	scaWering	problem	by	N	perfectly-conduc(ng	
circular	cylinders	buried	in	a	dielectric	half-space	
	

(IEEE	Trans.	Antennas	and	Propaga@on,	53(2),	2005,	pp.	719-727)	
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Monochroma(c	plane-wave	scaWering	problem	by	N	perfectly-conduc(ng	
circular	cylinders	buried	in	a	dielectric	half-space	
	

(IEEE	Trans.	Antennas	and	Propaga@on,	53(2),	2005,	pp.	719-727)	



CWA:	Theore(cal	Method	
The scattering problem of a plane wave impinging on a circular-section cylinder, with 
infinite length and in free space, can be solved analytically with an expansion of the 
electromagnetic field into cylindrical waves.	



CWA:	Theore(cal	Method	
The interaction of a plane wave with a flat interface separating two half-spaces can 
be solved analytically by using the Fresnel coefficents and the Snell‘s law.	



CWA:	Theore(cal	Method	
The Fresnel coefficents give the amplitude of the reflected and 
transmitted plane waves. 	



CWA:	Theore(cal	Method	
The Snell‘s law gives the propagation direction of the reflected and 
transmitted plane waves.	



CWA:	Theore(cal	Method	

	V(x,z,t):	y-component	of	the	electric/magne@c	field		
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CWA:	Theore(cal	Method	

§  Scattered field represented as a superposition of cylindrical waves  
§  Plane-wave spectrum to take into account the reflection and transmission of 

cylindrical waves by the interface 

Cylindrical	Func(on	

Reflected	Cylindrical	Func(on	

TransmiWed	Cylindrical	Func(on	

plane-wave	
spectrum	

Cylindrical	Func(on	

Reflected	Cylindrical	Func(on	

TransmiWed	Cylindrical	Func(on	

Cylindrical	Func(on	

Reflected	Cylindrical	Func(on	

plane-wave	reflec@on	
coefficient	

plane-wave	transmission	coefficient	



CWA:	Theore(cal	Method	
ScaWered	Field	

ScaWered-Reflected	Field	

ScaWered-TransmiWed	Field	

s 

sr 

st 

unknown	
coefficients	



CWA:	Theore(cal	Method	
Boundary	Condi(ons	

s sr 

sr s 

§  E polarization  

§  H polarization 

where																																																		for	E	pol.	and																																																								for	H	pol.	



CWA:	Theore(cal	Method	

Electromagnetic scattering by underground targets using the CWA, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini 

Monochroma(c	plane-wave	scaWering	problem	by	N	dielectric	circular	
cylinders	buried	in	a	dielectric	half-space	
	

(Radio	Science,	40,	2005,	RS6S18)	

Field	Inside	the	q-th	Cylinder	

unknown	
coefficients	

Boundary	Condi(ons	

where		tq = 1		for	E	pol.	and		tq = (n1/ncq)2		for	H	pol.	



CWA:	Theore(cal	Method	

Electromagnetic scattering by underground targets using the CWA, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini 

Monochroma(c	plane-wave	scaWering	problem	by	N	perfectly-conduc(ng	and	
dielectric	circular	cylinders	buried	in	a	finite-thickness	slab	
	

(IEEE	Trans.	Antennas	and	Propaga@on,	57(4),	2009,	pp.	1208-1217,	
Journal	of	Op@cal	Society	of	America	A,	27(4),	2010,	687-695)	

§  With the introduction of more 
interfaces between different media, 
the definition of  
 generalized multiple-reflected 
cylindrical functions  
 and  

 multiple-reflected-transmitted 
cylindrical functions  
 relevant to multiple reflection 
phenomena is needed. 



CWA:	Theore(cal	Method	

...in	a	soil	slab,	
between	air	and	
a	different	soil	

...in	a	dielectric	
half-space		

...above	a	dielectric	
half-space		

ε0	
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ε2	
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...in	a	slab,	among	two	
iden@cal	half-spaces	 ...in	a	grounded	slab	

PEC	

...inside	a	layer	of	a	
stra@fied	medium	



CWA:	Theore(cal	Method	

! Cylinders placed below a dielectric layer

II. Targets below the layer

" Through wall scattering

" Targets buried in a non-homogeneous
soil or below asphalt layerII. Targets below the layer

F. Frezza, L. Pajewski, C. Ponti, and G. Schettini, “Through-wall electromagnetic scattering by N conducting 
cylinders,” J. Opt. Soc. Am. A, Vol. 30, pp. 1632-1639, 2013.

! Cylinders placed below a dielectric layer

II. Targets below the layer

" Through wall scattering

" Targets buried in a non-homogeneous
soil or below asphalt layer

! Cylinders placed below a dielectric layer

II. Targets below the layer

" Through wall scattering

" Targets buried in a non-homogeneous
soil or below asphalt layer

(JOSA	A,	vol.	30(8),	2013,	pp.	1632-1639)	



CWA:	Theore(cal	Method	

Electromagnetic scattering by underground targets using the CWA, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini 

Pulsed	plane-wave	scaNering	problem	by	N	perfectly-conduc@ng	and	dielectric	
circular	cylinders	buried	in	a	dielectric	half-space	
	

(IEEE	Geoscience	Remote	Sensing	LeNers,	4(4),	2007,	pp.	611-615)	

§  Sampling of the incident-field spectrum and of the spectra of the various field terms 
§  Solution for any sample in the spectral domain by using the CWA 

§  Time-domain solution by means of the inverse transform 

Current	Line	scaNering	problem	by	N	perfectly-conduc@ng	and	dielectric	circular	
cylinders	buried	in	a	dielectric	half-space	
	

(Progress	in	Electromagne@cs	Research,	80,	2008,	pp.	179-196)	
	
	
	

(1) 2 2
0 0 1( , ) ( ) ( )i L LV V H nξ ζ ξ χ ζ η⎡ ⎤= − − + −

⎣ ⎦



CWA:	Theore(cal	Method	

Near	Surface	Geophysics,	13(3),	2015,	pp.	219-225	
Arbitrary	2D	distribu(on	of	the	field	
	
	
	
	
	
Rough	surface	between	air	and	soil	

Near	Surface	Geophysics,	11(2),	2013,	pp.	177-183	

Small	Perturba@on	Method	
combined	with	the	CWA	

Expansion	of	the	incident	field	in	plane	waves.	CWA	applied	to	each	plane	wave.	



CWA:	Numerical	solu(on	

CWA	computa(onal	issues	
	

	 						 										

Depends	on	the	trunca@on	of	
the	involved	series		

(cylindrical	expansions)	

Increases	with	the	number	of	
cylinders,	their	size	and	the	
permihvity	of	the	involved	

materials.	

Accuracy
		

Execu(on	(me
		

Memory		
requirements	

Low.	



CWA:	Numerical	solu(on	
Series	trunca(on	to	a	finite	number	of	elements	

§  Convergence properties of the 
method 

§  Truncation criterion 

Numerical	evalua(on	of	spectral	integrals	

§  Infinite	extension	of	the	integra@on	domain	

§  Highly	oscilla@ng	behavior	of	the	integrand	
§  Considerable	variability	of	the	Fm(ξ,n||)	func@on	

§  Short	computa@onal	@me	is	desirable	for	inverse	scaNering	applica@ons	



CWA:	Numerical	solu(on	

Electromagnetic scattering by underground targets using the CWA, F. Frezza, L. Pajewski, C. Ponti, and G. Schettini 

Integra(on	of	the	evanescent	spectrum	

§  Smaller ζ values: Laguerre-Gauss quadrature formula 
§  Larger ζ values: decomposition of the integration interval in subintervals of 

suitable length, Gauss-Legendre quadrature formula in each subinterval,            
ε-algorithm (convergence acceleration) 

Integra(on	of	the	homogeneous	spectrum	

§  Discrimina@on	between	par@ally	and	totally	reflected	waves	

§  Development	of	an	adap@ve	integra@on	technique	

ü 	Calculus	of	the	local	frequency	oscilla@on	rate	f	
ü 	Decomposi@on	of	the	integra@on	interval	in	subintervals	in	which	f		behaves	
monotonically;	further	decomposi@on	of	each	subinterval,	by	using	an	adap@ve	
procedure	for	the	evalua@on	of	the	effec@ve	oscilla@on	period	

ü 	Gauss-Legendre	quadrature	formula	in	each	sub-subinterval	



CWA:	Numerical	solu(on	

§ 	If	T10=K	and	χ=	-	ξ:		
TW(ξ,ζ,-	ξ)=	KCW(n1ξ,n1ζ)	

quan@ta@ve	comparison	between	the	
results	of	the	integra@on	algorithm									
and	an	accurate	evalua@on	of	CW	
carried	out	by	means	of	20th	order	
polynomial	approxima@on	of	Bessel	
func@ons	

§ 	This	case	corresponds	to	a	flat	
surface	with	reflec@on	proper@es	
independent	of	the	incident	angle	



CWA:	Numerical	solu(on	
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CWA:	Numerical	results	

CWA	is	conceived	for	the	simula@on	of	cylindrical	targets	with	circular	sec@on.	
	
But	also	targets	with	arbitrary	shape	can	be	simulated!!	



CWA:	Numerical	results	

The	arbitrary	shape	of	a	PEC	target	can	be	approximated	with	a	suitable	set	of	PEC	
small	circular-sec@on	cylinders	along	ist	border.	



CWA:	Numerical	results	

The	total	area	of	the	approxima@ng	small	cylinders	has	to	be	equal	to	the	area	of	
the	simulated	target.	

Once	N	is	fixed,	the	same	area	rule	allows	to	calculate	the	size	of	the	small	cylinders.		
Such	rule	is	not	the	op@mum,	but	gives	good	results.	Configura@ons	of	cylinders	of	
different	size	may	also	be	used.	



CWA:	Numerical	results	
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CWA:	Numerical	results	

Internal	field	
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CWA:	Numerical	results	The same-area rule: square cylinder

L= 2 n1 = √2
χ = 2.6π n2 = √1.5
Λ= 50
ϕi = 0
TM polarization

Near field: ξ = −0.1
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Wire-grid simulation of a square metallic border



CWA:	Numerical	results	

n1	=	2,	nc	=	5,	χ	=	2.5,	ξ	=	1,	φi	=	0,	E	pol.	

Rectangular-Sec@on	ScaNerer	

Tilted	Slab	

Circular	Shell	

w	=	2,	h	=	1	
Rint	=	0.8,	Rext	=	1	

L	=	1.5√2,	t	=	0.1√2	
ψ	=	45°,	

Good	results	are	obtained	when		
the	total	volume	(for	unit	length)		
of	the	N	modeling	scaNerers	is	equal	to	the	
volume	of	the	simulated	object	

Same-Volume	Rule	



CWA:	Numerical	results	

PEC	cylinder	in	a	grounded	slab	

Image	
theory	

α	=	π 		
χ	=	20π	
η	=	0 		
Λ=	30π	
ε1=	2	
ϕi=	0°	
E	pol.	

Equivalent	(for	ξ < Λ)	geometry	



CWA:	Numerical	results	PVC water pipe

ε’1 = 10 σ1 = 0.01 S/m
ε’W = 81 σW = 1 S/m
ε’PVC = 3.7 σ1 = 0
aint = 5 cm aext = 10 cm
h = 50 cm f = 600 MHz
TM pol.

Re(Total scattered field) [a.u.]

aint

aextWATER
PVC

L L1, 0h d= − =



CWA:	Numerical	results	

• Air-dielectric-dielectric background
• Buried metallic cable

Asphalt layer

a = 5.5 cm εr1 = 3.5 

d = 60 cm εr2 = 5

L = 10 cm TM pol.
ϕi = 0

d

L

a

|Total scattered field| [a.u.] |Total scattered field| [a.u.]

f = 600 MHz f = 1200 MHz



CWA:	Numerical	results	

§ 	The	spectrum	and	
its	samples:	

§ 	Time-shape	of	the	incident	
pulsed	plane-wave:	

ψ=ω/ω0 

τ=ω0t 

ü 	Waveform	consistent	with	many	
current	ultrawide-band	short-pulsed	
sources	

ü 	This	pulse	can	be	considered	
vanishing	for	τ>4	and	its	spectrum	
does	not	contain	frequencies	ψ>6	

ü 	With	an	appropriate	choice	of	ω0	
the	reference	frequency,	related	to	
spa@al	resolu@on,	can	be	tuned	



CWA:	Numerical	results	

a1=a3=2	cm,	a2=4	cm,	

η1=0,	η2=0.21,	η3=0.42,	

χ1=0.3k0,	χ2=0.4k0,	χ3=0.35k0	
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§ 	Time-shape	of	the	scaNered-transmiNed	field:	
ü 	Diffrac@on	from	cylinders	
ü 	Reverbera@ons	between	cylinders	and	air-ground	interface	
ü 	Creeping-wave	circumnaviga@on	of	cylinders	

-n·r/c0=1	ns,	
k0=30	m-1,	g0=1,	
n1=1.5,		
E	pol.	



CWA:	Conclusions	
q  CWA: Analytical-numerical method for the solution of the 2D scattering problem   
     by a set of cylinders buried in a dielectric half-space or finite-thickness slab 
§  Adaptive integration techniques for the evaluation of the spectral integrals 
§  Source: monochromatic or pulsed plane-wave, current line,  

arbitrary 2D distribution of the field 
§  Rough interfaces between different media 
§  Scatterers of arbitrary cross-section simulated by a suitable set of circular cylinders 
§  Results in near- and far-field zones, E and H polarization, spectral and time domain 

q  Applications: 
§  Characterization of GPR scenarios, discretized in cylindrical cells 
§  Reflection and transmission by reinforced concrete 
§  Diagnostics of buried utilities (tunnels, conduits, electricity cables, gas or water pipes) 
§  Direct solver in iterative algorithms for the solution of inverse scattering problems 

q  Lossy media & Extension of the method to 3D geometries:  
§  See Nicola’s presentation! 
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