Reconfigurable stepped-frequency GPR prototype for civil-engineering and archaeological prospection, developed at the National Research Council of Italy. Examples of application and case studies.

Raffaele Persico

UNIVERSITÀ TELEMATICA INTERNAZIONALE UNINETTUNO

Reminds

$$S(f) = \int_{-\infty}^{+\infty} s(t) \exp(-j2\pi ft) dt$$

$$S(-f) = \int_{-\infty}^{+\infty} s(t) \exp(j2\pi ft) dt = S^*(f)$$

$$s(t) = \int_{-\infty}^{+\infty} S(f) \exp(j2\pi ft) df =$$

$$= 2\operatorname{Re}\int_{0}^{+\infty} S(f) \exp(j2\pi ft) df$$

Reminds

Convolution

$$f_1 * f_2 = g(t) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau$$

Convolution and Fourier Transform

$$FT(g_1 * g_2) = G_1(f)G_2(f)$$
$$FT(g_1g_2) = G_1 * G_2$$

Reminds

Sampling property of the delta

 $\int \delta(\tau) f(\tau) d\tau = f(0)$

 $\int \delta(\tau - \tau_{o}) f(\tau) d\tau = f(\tau_{o})$

 $f * \delta = \int f(\tau) \delta(t - \tau) d\tau = f(t)$

Expression of the received sinthetic pulse for 2N+1 samples, constant radiated spectrum, constant attenuation and phase of the reflected signals

$$s(t) \approx 2\Delta f \frac{\sin((2N+1)\pi\Delta ft))}{\sin(\pi\Delta ft)} \cos(2\pi f_c t + \theta)$$

The synthetic pulse is replicated, but the replicas are in general not equal to each other

Flux diagram

In "synthesis"...

...but the pulse is replicated with pseudo-replicas at distance $1/\Delta f$...

Trigonometric reminds

$$\cos^{2}(a) = \frac{1}{2} + \frac{1}{2}\cos(2a)$$
$$\sin^{2}(a) = \frac{1}{2} - \frac{1}{2}\cos(2a)$$
$$\sin(a)\cos(a) = \frac{1}{2}\sin(2a)$$

Homodyne demodulation

Upper branch (in phase component)

$$2A_{n}\cos\left(2\pi f_{n}t+\varphi_{n}\right)\cos\left(2\pi f_{n}t\right) =$$

$$=2A_{n}\cos\left(2\pi f_{n}t\right)\left[\cos\left(2\pi f_{n}t\right)\cos\left(\varphi_{n}\right)-\sin\left(2\pi f_{n}t\right)\sin\left(\varphi_{n}\right)\right] =$$

$$=2A_{n}\cos\left(\varphi_{n}\right)\cos^{2}\left(2\pi f_{n}t\right)-2A_{n}\sin\left(2\pi f_{n}t\right)\cos\left(2\pi f_{n}t\right)\sin\left(\varphi_{n}\right) =$$

$$=2A_{n}\cos\left(\varphi_{n}\right)\left[\frac{1}{2}+\frac{1}{2}\cos\left(4\pi f_{n}t\right)\right]-A_{n}\sin\left(\varphi_{n}\right)\sin\left(4\pi f_{n}t\right) \Rightarrow$$
after filtering we achieve $A_{n}\cos\left(\varphi_{n}\right)=I_{n}$

Lower branch (quadrature component)

$$2A_{n}\cos\left(2\pi f_{n}t+\varphi_{n}\right)\sin\left(2\pi f_{n}t\right) =$$

$$=2A_{n}\sin\left(2\pi f_{n}t\right)\left[\cos\left(2\pi f_{n}t\right)\cos\left(\varphi_{n}\right)-\sin\left(2\pi f_{n}t\right)\sin\left(\varphi_{n}\right)\right] =$$

$$=A_{n}\cos\left(\varphi\right)\sin\left(4\pi f_{n}t\right)-2A_{n}\sin^{2}\left(2\pi f_{n}t\right)\sin\left(\varphi_{n}\right) =$$

$$=A_{n}\cos\left(\varphi_{n}\right)\sin\left(4\pi f_{n}t\right)-2A_{n}\left[\frac{1}{2}-\frac{1}{2}\cos\left(4\pi f_{n}t\right)\right]\sin\left(\varphi_{n}\right) \Rightarrow$$
after filtering we achieve $-A_{n}\sin\left(\varphi\right) = Q_{n}$

Final result for each harmonic signal

$$h_n(t) = I_n \cos(2\pi f_n t) + Q_n \sin(2\pi f_n t) =$$
$$= A_n \cos(2\pi f_n t + \varphi_n)$$

Synthetic pulse

$$s(t) = \sum_{n=1}^{N} h_n(t)$$

Drawbacks of the homodyne demodulation

The baseband signal is subject to more noise, in particular the flicker noise, approximately decreasing as 1/f or as a roof function.

It is difficult to translate in baseband N signals from N different frequencies keeping uniformly low the noise.

For this reason it usually preferred an heterodyne demodulation scheme.

Trigonometric reminds

$$\begin{cases} 2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b) \\ 2\sin(a)\cos(b) = \sin(a+b) + \sin(a-b) \end{cases}$$

Translation of the radiated signal on the frequency axis

Translation of the received signal on the frequency axis

$$2\cos\left(2\pi(f_n - f_L)t\right)$$

$$A_n \cos\left(2\pi f_n t + \varphi_n\right) \longrightarrow A_n \cos\left(2\pi f_L t + \varphi_n\right)$$

Heterodyne demodulation

Averaged measurement of the in-phase and quadrature components

(N is chosen by the manufacturer)

Power of the noise (white noise) on each received "harmonic" signal

$$N = K_{B}TB$$
$$K_{B} = 1.38 \times 10^{-23} \frac{J}{K^{0}}$$

$$SNR \approx \frac{\left\|S\left(f\right)\right\|^{2}}{K_{B}TB}$$

Truncated sinusoid

Integration time

Spectrum of any radiated truncated harmonic signal $s_n(t) = \cos\left(2\pi f_n t\right) \Pi\left(\frac{t}{T_{int}}\right)$ $FT\left(\Pi\left(\frac{t}{T_{int}}\right)\right) = T_{int}\operatorname{sinc}\left(\pi fT_{int}\right)$ $FT\left(\cos\left(2\pi f_n t\right)\right) = \frac{1}{2}\left\{\delta\left(f - f_n\right) + \delta\left(f + f_n\right)\right\}$

 $S_{n}(f) = \frac{T_{\text{int}}}{2} \left\{ \operatorname{sinc}\left(\pi T_{\text{int}}(f - f_{n})\right) + \operatorname{sinc}\left(\pi T_{\text{int}}(f + f_{n})\right) \right\}$

Let us consider the "pieces"

$$\operatorname{sinc}(\pi T_{\operatorname{int}}(f-f_{n})),\operatorname{sinc}(\pi T_{\operatorname{int}}(f+f_{n}))$$

The main lobe is wide 1/T_{int} for both pieces

$$SNR \approx \frac{\left\|S_{n}(f)\right\|^{2}}{K_{B}TB_{n}} \approx \frac{T_{\text{int}}\left\|S_{n}(f)\right\|^{2}}{K_{B}T}$$

Prolonging the integration time the SNR increases, but the measurement requires more time

- •The integration time is a default parameter chosen by the manufacturer.
- •Possibly, there is the possibility to extend the default integration time times a factor.
- •The integration time is usually the same for all the harmonics spanned by the stepped frequency system.

NON-AMBIGUOUS TIME INTERVAL

The time windows where we can reliably examine the synthetic pulses is given by

 $T_{\rm max} = \frac{1}{\Delta f}$

The depth investigated cannot exceed the non-ambiguous level

$$D_{\max} = \frac{cT_{\max}}{2} = \frac{c}{2\Delta f}$$

The frequency step cannot exceed the maximum value:

N.B.: D_{max} depends on the penetration of the signal, not on the maximum depth of interest.

Received synthetic pulse for a target at depth level t_o (the spectrum of the signal is considered flat in its band, sampled with 2N+1 frequencies)

 $s(t) \approx K \times$

$$\times \left\{ \sqrt{\left(1 + \frac{\varepsilon}{2}\right)^{2} + \frac{\alpha^{2}}{4}} \cos\left(2\pi f_{c}\left(t - t_{o}\right) + \theta - tg^{-1}\frac{\alpha}{2 + \varepsilon}\right) \frac{\sin\left((2N + 1)\pi\Delta f\left(t - t_{o}\right)\right)}{\sin\left(\pi\Delta f\left(t - t_{o}\right)\right)} + \frac{1}{\sqrt{\frac{\varepsilon^{2}}{4} + \frac{\alpha^{2}}{4}}} \cos\left(2\pi f_{c}\left(t + t_{o}\right) - \theta - tg^{-1}\frac{\alpha}{\varepsilon}\right) \frac{\sin\left((2N + 1)\pi\Delta f\left(t + t_{o}\right)\right)}{\sin\left(\pi\Delta f\left(t + t_{o}\right)\right)}\right\}}$$

Hermitian image at $\frac{1}{\Lambda f} - t_{o}$

 Δ

Signal to Hermitian image ratio SHR

$$s_{r}(t) \approx K \times \\ \times \left\{ \sqrt{\left(1 + \frac{\varepsilon}{2}\right)^{2} + \frac{\alpha^{2}}{4}} \cos\left(2\pi f_{c}(t - t_{o}) + \theta - tg^{-1}\frac{\alpha}{2 + \varepsilon}\right) \frac{\sin\left((2N + 1)\pi\Delta f(t - \overline{t})\right)}{\sin\left(\pi\Delta f(t - \overline{t})\right)} + \right. \\ \left. - \sqrt{\frac{\varepsilon^{2}}{4} + \frac{\alpha^{2}}{4}} \cos\left(2\pi f_{c}(t + t_{o}) - \theta - tg^{-1}\frac{\alpha}{\varepsilon}\right) \frac{\sin\left((2N + 1)\pi\Delta f(t + \overline{t})\right)}{\sin\left(\pi\Delta f(t + \overline{t})\right)} \right\}$$

$$SHR \approx \frac{\sqrt{\left(1 + \frac{\varepsilon}{2}\right)^2 + \frac{\alpha^2}{4}}}{\sqrt{\frac{\varepsilon}{4}^2 + \frac{\alpha^2}{4}}} \approx \frac{2}{\sqrt{\varepsilon^2 + \alpha^2}}$$

Counteraction against Hermitian images: halving the frequency step at parity of maximum investigated time depth

The reconfigurable GPR system (50 MHz-1 GHz)

Reconfigurable antennas

The matrix church of Parabita

SLICE ACHIEVED WITH A RIS-HI MODE PULSED SYSTEM

The co-cathedral of St. John in Malta

Chapel of Aragon

Chapel of the Sacristy

The Tomb of the Pillar

Depth 1.26 m

Depth 1.61m

Depth 1.75m

Depth 2.20m

Depth 2.45m

Apparent thickness of the tomb 49 cm, real thickness 2.1 m

The area of the "cryptoporticus" in Egnazia

Depth 40 cm

Depth 94 cm

Depth 150 cm

The church of Santa Croce in Gravina in Puglia

10 5 0 m

Depth 22 cm

Depth 77 cm

Depth 158 cm

The Archaic Ditch of Manduria

Pulsed GPR

Prototype

Depth 360 cm

Reconfigurable integration times

 $f_n \leftrightarrow T_{int n}$

Reconfigurable radiated power at each frequency

The reconfiguration of the integration times as strategy again interferences

Variance of the samples

An experiment

Interference of the transceivers

Signal with the default integration times

Signal with the reconfigured integration times

An experiment in the field

Interference of the repeater

Signal with the default integration times

Signal with the reconfigured integration times

Increasing of the comprehensive measurement time less than 5% in both cases.