

TWINS II

ANNA ŠUŠNJARA, VICKO DORIĆ & DRAGAN POLJAK

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture University of Split, Croatia

Training School on Ground Penetrating Radar for civil engineering and cultural heritage management Roma, Italy, May 14-18, 2018

TWINS = Thin WIre Numerical Solver

Suzana = Sustav za analizu antena (Croatian)

- Used for educational purpose and scientific research

What is solved?

- Governing equations for a current distribution along the wire radiating above a half space

Frequency domain solver (FD) Time domain solver (TD)

Numerical method?

- Galerkin-Bubnov scheme of Indirect Boundary Element Method (GB-IBEM)

Programming language:

- C++

TD vs. FD techniques

Time domain (TD) techniques:

Frequency domain (FD) techniques:

- Applied for a large frequency spectrum, but for single source
- More complex formulation requiring more computational effort
- Deeper physical insight

- Applied for more sources, but at a single frequency
- Formulation is substantially less demanding
- In general, regulatory standards are specified in FD form; convenient for analyzing EMC properties

TWINS I – Frequency Domain (FD)

TWINS I – Time Domain (TD)

5 😽 Konfiguracija antenskog niza 🗕 🗖 🗙 a: | Aktivna žica: 1 Raspršivač T 10E-9 Pobudna fc. Gaussov puls Ŧ Er 10 🔲 Savršeno vodljiva zemlja Antene: $\times 0$ XL Ζ N Y 2 5 31 2 31 5,50 < ÷ ? X E,

TWINS I

- Frequency Domain (FD)

- Presented on final GPR conference in Warsaw

What is solved?

Integral formulas for the electric field transmitted into the subsurface.

NEW!

The subsurface is non-homogenous.

Field transmittee	l into ground: frequend	y domain integral equa	ation approach	I	- 🗆 🗙
Antenna parameters		Fr	equency domai	in (FD)	
length 1 radius (mm) 6.74	height (cm) 10	Single frequency	🔵 Single p	ooint 🔿 x	z grid, multiple F
Ground parameters		Coordinates (m)	START	END	No. points
		x axis	0.5	0.5	1
U Layer 1 U Layer	2 Cayer 3	z axis	0	2	50
permittivity 10 8	10	Frequency (MHz)	100	150	15
conductivity (mS/m) 0 0	0				
thickness (m) 0.25 0.3			Time Domain	(TD)	
Run the simulation		O Inverse F	ast Fourier Trans	form (IFFT) to TD	1
Method: 🔿 MIT 💿 RCA	Run the simulation	time delay (ns)	1.43	time frame (ns	5) 40
		halwidth (ns)	0.667	x (m	0.5
Results are saved in:	Save			z (m	i) 0.5
FD:		Show Gauss pul	se		
TD:				Save freque	ncy domain field

Training School on GPR for civil engineering and cultural heritage management

Talk Layout

THEORETICAL BACKGROUND

- Model geometry
- INSTALLATION PROCEDURE
- USER GUIDE:
 - Antenna parameters
 - Ground parameters
 - Frequency domain (FD)
 - Time domain (TD)
 - Run the simulation
- EXAMPLES
- **REFERENCES**

Model geometry

Ground penetrating radar dipole antenna above a lossy half space.

The half space is modeled as a three layered medium.

Training School on GPR for civil engineering and cultural heritage management

Rome, Italy, May 14-18, 2018

8

Pocklington's integro-differential equation:

$$E_x^{exc} = j \,\omega \frac{\mu}{4\pi} \int_{-\frac{L}{2}}^{\frac{L}{2}} I(x') g(x, x') dx' - \frac{1}{j4\pi\omega\varepsilon_0} \frac{\partial}{\partial x} \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{\partial I(x')}{\partial x'} g(x, x') dx'$$

I(x') ... the unknown current

g(x,x') ... Green's function

$$g(x, x') = g_0(x, x') - R_{TM} g_i(x, x')$$

 $g_0(x,x')$... for free space

$$g_0(x,x') = \frac{e^{-jk_0R_0}}{R_0}$$

 $g_i(x, x') = \frac{e^{-jk_0 R_i}}{R_i}$

 $g_i(x,x')$... from image theory

Wire above a lossy half-space:

10

Electric field integral relations:

$$E_{x} = \frac{1}{j4\pi\omega\varepsilon_{0}} \left[\int_{0}^{L} \frac{\partial I(x')}{\partial x'} \frac{\partial \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{x}')}{\partial x} dx' - \gamma^{2} \int_{0}^{L} I(x') \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{x}') dx' \right]$$

$$E_{y} = \frac{1}{j4\pi\omega\varepsilon_{0}} \int_{0}^{L} \frac{\partial I(x')}{\partial x'} \frac{\partial g(x, y, z, x')}{\partial y} dx'$$

$$E_{z} = \frac{1}{j4\pi\omega\varepsilon_{0}} \int_{0}^{L} \frac{\partial I(x')}{\partial x'} \frac{\partial g(x, y, z, x')}{\partial z} dx'$$

 $\boldsymbol{g}(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{T}_{\boldsymbol{T}\boldsymbol{M}} g_0(\boldsymbol{x},\boldsymbol{x}')$

Training School on GPR for civil engineering and cultural heritage management

Numerical procedure:

Galerkin Bubnov scheme of Indirect Boundary Element Method (GB-IBEM)

Reflection/transmission coefficients for three layered media configuration:

Air + Layer1 + Layer2

11

The **plane wave** approximation with **oblique incidence** at interfaces.

The **continuity conditions** for the tangential components of electric and magnetic fields at two interfaces (01 and 12) and the **Snell's law** for wave propagation yield the following equations

$$E_0^+ = \frac{1}{\tau_{01}} E_1^+ + \frac{\rho_{01}}{\tau_{01}} E_1^- \qquad E_1^+ = \frac{1}{\tau_{12}} e^{\gamma_1 \cos \vartheta_1 d_1} E_2^+$$
$$E_0^- = \frac{\rho_{01}}{\tau_{01}} E_1^+ + \frac{1}{\tau_{01}} E_1^- \qquad E_1^- = \frac{\rho_{12}}{\tau_{12}} e^{-\gamma_1 \cos \vartheta_1 d_1} E_2^+$$

 E_0^+ , E_1^+ , E_0^- & E_1^- ... the magnitude of electric field at the layer interfaces for the wave propagating in the negative and positive direction of z axis, respectively

Fresnel's reflection/transmission coefficient approximation at interfaces

Training School on GPR for civil engineering and cultural heritage management

Rome, Italy, May 14-18, 2018

12

$$\begin{bmatrix} E_0^+ \\ E_0^- \end{bmatrix} = M_{01} \begin{bmatrix} E_1^+ \\ E_1^- \end{bmatrix} \qquad \begin{bmatrix} E_1^+ \\ E_1^- \end{bmatrix} = P_{12} M_{12} \begin{bmatrix} E_2^+ \\ E_2^- \end{bmatrix}$$

$$M_{mn} = \frac{1}{\tau_{mn}} \begin{bmatrix} 1 & \rho_{mn} \\ \rho_{mn} & 1 \end{bmatrix} \quad m = 0, 1, n = 1, 2 \qquad \dots \text{ matching matrix}$$

$$P_{12} = \begin{bmatrix} e^{\gamma_1 \cos \vartheta_1 d_1} & 0\\ 0 & e^{-\gamma_1 \cos \vartheta_1 d_1} \end{bmatrix} \qquad \dots \text{ propagation matrix}$$

The layers k = 3, ... are readily included by adding the propagation and matching matrices :

By setting $E_0^+ = 1 V/m$, all the other magnitudes E_m^+ and E_m^- are easily determined.

Electric field can be calculated using the following expressions:

$$\vec{E}_0 = E_1^+ (\cos\vartheta_0 \,\vec{e}_x + \sin\vartheta_0 \,\vec{e}_z) e^{-\gamma_0 (x\,\sin\vartheta_0 - z\,\cos\vartheta_0)} + E_0^- (\cos\vartheta_0 \,\vec{e}_x - \sin\vartheta_0 \,\vec{e}_z) e^{-\gamma_0 (x\,\sin\vartheta_0 + z\,\cos\vartheta_0)}$$
$$\vec{E}_1 = E_1^+ (\cos\vartheta_1 \,\vec{e}_x + \sin\vartheta_1 \,\vec{e}_z) e^{-\gamma_1 (x\,\sin\vartheta_1 - z\,\cos\vartheta_1)} + E_1^- (\cos\vartheta_1 \,\vec{e}_x - \sin\vartheta_1 \,\vec{e}_z) e^{-\gamma_1 (x\,\sin\vartheta_1 + z\,\cos\vartheta_1)}$$
$$\vec{E}_2 = E_2^+ (\cos\vartheta_2 \,\vec{e}_x + \sin\vartheta_2 \,\vec{e}_z) e^{-\gamma_2 (x\,\sin\vartheta_2 - z\,\cos\vartheta_2)}$$

The reflection and transmission coefficients \mathbf{R}_{TM} and \mathbf{T}_{TM} appearing in the Green's function are calculated as the ratio between the field value at the ground surface and the field value obtained from the equations above at the given observation point.

Alternative simplified approach to calculate tranmission / reflection coeffiicients:

- Modified image theory based approach
- convenient for TD computations
- a comparison with the plane wave approximation in FD needed for benchmark

Training School on GPR for civil engineering and cultural heritage management

The **MIT** approach assumes the normal incidence of a propagating EM wave, therefore the incidence angles are zero: $\vartheta_m = 0^\circ$.

The expressions for the reflection and transmission coefficients for the two adjacent media indexed with m and n are given as:

$$\rho_{mn}^{MIT} = \frac{(Z_m^2 - Z_n^2)}{(Z_m^2 + Z_n^2)}$$

$$\tau_{mn}^{MIT} = \frac{2Z_m^2}{(Z_m^2 + Z_n^2)}$$

m = 0,1 n = 1,2

Installation procedure

Run transmitted_E_field_pkg.exe.

This action installs MATLAB Compiler Runtime (MCR) version 8.1. and extracts the following files:

Rome, Italy, May 14-18, 2018

16

18

User guide

- ANTENNA PARAMETERS
- GROUND PARAMETERS
- FREQUENCY DOMAIN (FD)
- TIME DOMAIN (TD)
- RUN THE SIMULATION

Graphical user interface

Field tr	ansmitted into ground: frequenc	y domain integral equa	ation approad	:h	- 🗆 🗙
Antenna par	ameters	Fr	equency dom	ain (FD)	3.
length (m) 1 radius (mm)	6.74 height (cm) 10	Single frequency	○ Single	e point 🛛 xz g	rid, multiple F
Ground para	ameters	Coordinates (m)	START	END	No. points
		x axis	-0.5	1.5	50
Layer 1	◯ Layer 2 ◯ Layer 3	z axis	0	2	50
permittivity 10	10 10	Frequency (MHz)	10	150	15
conductivity (mS/m) 0	0 0				
thickness (cm) 25	30		Time Domoi	n (TD)	
Run the sim	ulation	O Inverse F	ast Fourier Tran	nsform (IFFT) to TD	4
Method: MIT RCA 	Run the simulation	time delay (ns)	1.43	time frame (ns)	40
		halwidth (ns)	0.667	x (m)	0.5
Results are saved in:	Save			z (m)	0.5
FD:		Show Gauss pul	se		
TD:				Save frequenc	y domain field
1					

Antenna parameters

Ground parameters

Training School on GPR for civil engineering and cultural heritage management

Frequency domain (FD)

Frequency domain (FD)					
Single frequency	○ Single point ○ xz grid, multiple F				
Coordinates (m)	START	END	No. points		
x axis	-0.5	1.5	50		
z axis	0	2	50		
Frequency (MHz)	10	150	15		

Figures generated:

- Evs. x (z) if only one z (x) point is defined
- contours if xz grid is defined

Training School on GPR for civil engineering and cultural heritage management

	equency dom		
○ Single frequency	Single	point	xz grid, multiple f
Coordinates (m)	START	END	No. points
x axis	0.5	1.5	50
z axis	0.25	2	50
requency (MHz)	10	100	50

Figure generated:

- E vs. frequency

Frequency domain (FD)

O Single frequency	O Single	point	xz grid, multiple F
Coordinates (m)	START	END	No. points
x axis	-0.5	1.5	50
z axis	0	2	50
Frequency (MHz)	10	100	50

22

Figure generated:

- None
- The results are saved in .txt file

Freq. (MHz)	x(m)	z(m)	$Real(E_x)$	lmag(E _x)	$Real(E_z)$	lmag(E _z)
		Exam	ple_No_1 - Notepac	i i		- 🗆 ×
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew	<u>H</u> elp					
10000000.000000	-0.500000	0.000000	-0.001053	-0.002397	0.000729	0.000839 ^
10000000.000000	-0.459184	0.000000	-0.001170	-0.002655	0.000862	0.001014
10000000.000000	-0.418367	0.000000	-0.001306	-0.002949	0.001029	0.001236
10000000.000000	-0.377551	0.000000	-0.001466	-0.003287	0.001240	0.001519
10000000.000000	-0.336735	0.000000	-0.001650	-0.003671	0.001510	0.001883
10000000.000000	-0.295918	0.000000	-0.001860	-0.004104	0.001855	0.002354
10000000.000000	-0.255102	0.000000	-0.002089	-0.004582	0.002301	0.002966
10000000.000000	-0.214286	0.000000	-0.002327	-0.005089	0.002876	0.003761

Time domain (TD)

- The excitation is given as a Gaussian waveform where the parameters t_w and t₀ represent the half width and time delay of a pulse
- Figure generated upon the calculation:

- E vs. time for tangential component of electric field

Training School on GPR for civil engineering and cultural heritage management

Examples

E vs. xz
 E vs. z
 E vs. freq
 E vs. time

Training School on GPR for civil engineering and cultural heritage management

Rome, Italy, May 14-18, 2018

24

	Antenna pa	rameters		Fr	equency dom	ain (FD)	
length 1	radius (mm)	6.74 hei	ight (cm) 10	Single frequency	○ Single	e point 🛛 🤉	xz grid, multiple
	Ground par	rameters		Coordinates (m)	START	END	No. points
	O Laver 1	O Laver 2	Laver 3	x axis	-0.5	1.5	50
	0			z axis	0	2	50
permittivity	10	8	10	Frequency (MHz)	10	150	15
conductivity (mS/m)	0	0	0				
thickness (m)	0.25	0.3			Time Domai	n (TD)	
	Run the sir	nulation		O Inverse F	ast Fourier Trar	nsform (IFFT) to Ti	D
Method: (Ru	n the simulation	time delay (ns)	1.43	time frame (n	s) 40
				halwidth (ns)	0.667	x (r	n) 0.5
Results are sav	ed in:		Save			z (r	n) 0.5
FD:				Show Gauss pul	se		
						(

Rome, Italy, May 14-18, 2018

Training School on GPR for civil engineering and cultural heritage management

Training School on GPR for civil engineering and cultural heritage management

f = 10 MHz

Training School on GPR for civil engineering and cultural heritage management

f = 300 MHz

Training School on GPR for civil engineering and cultural heritage management

f = 300 MHz

Training School on GPR for civil engineering and cultural heritage management

	Save as			×	30
	is PC → Desktop → test		v 🖒 Search test	٩	
Organize 🔻 New fold	r		E	≡ ▼ 🔞	
★ Favorites ■ Desktop ■ Recent places ▲ OneDrive - Shortcut	Name Date modified Type Size No items match your search.				
) (→) ▼ ↑ 🕌 ト This PC ト Desktop ト test				
🜈 OneDrive	★ Favorites Name		Date modifie	d Type	Size
🖳 This PC	Desktop		14.5.2018. 10:	39 Text Doc	ument 4 KB
Desktop	🕮 Recent places 🛛 📋 E_vs_xz_FIELD		14.5.2018. 10:	39 Text Doc	ument 279 KB
Downloads	ConeDrive - Shortcut				
Music					
Videos			Ru	n the simulatio	n
Local Disk (C:) ┌₀ Local Disk (D:)			Method: OMIT	● RCA	Run the simulation
辑 Network					
			Results are saved in:		Save
		FD:	C:\Users\	ansus_000\Desktop	\test\E_vs_xz
Elle annual Eller	1	TD:			
Save as type: All Fil	4			~	
Hide Folders			Save	Cancel .::	
Training Schoo	on GPR for civil engineering and cultural				Rome, Italy, May 14-18,

2018

20

Freq. (MHz)	x(m)	Real(I)	lmag(l)
	E_vs_xz_CURREN	T - Notepad	- 🗆 🗙
<u>File Edit Format View</u>	<u>H</u> elp		
300000000.000000	0.00000	0.00000	0.000000 ^
30000000.000000	0.016393	0.000011	-0.000570
30000000.000000	0.032787	0.000021	-0.000814
30000000.000000	0.049180	0.000035	-0.001096
30000000.000000	0.065574	0.000050	-0.001337
30000000.000000	0.081967	0.000069	-0.001562
30000000.000000	0.098361	0.000090	-0.001764

⁻ req. (MHz)	x(m)	z(m)	Real(E _x)	lmag(E _x)	Real(E_z)	Imag(E _z)
		E_vs_>	z_FIELD - Notepad			- 🗆 🗙
<u>E</u> dit F <u>o</u> rmat <u>V</u> iew	<u>H</u> elp					
000000.000000	-0.500000	0.00000	-0.028258	0.002993	0.093729	-0.101466 ^
000000.000000	-0.459184	0.000000	-0.029324	-0.012547	0.145006	-0.043515
000000.000000	-0.418367	0.000000	-0.022069	-0.028614	0.161904	0.040404
000000.000000	-0.377551	0.000000	-0.006098	-0.040939	0.131095	0.130706
000000.000000	-0.336735	0.000000	0.016947	-0.044938	0.049877	0.200821
000000.000000	-0.295918	0.000000	0.043190	-0.036573	-0.070137	0.222559
000000.000000	-0.255102	0.000000	0.066621	-0.013279	-0.201731	0.173307
000000.000000	-0.214286	0.000000	0.079468	0.025125	-0.303865	0.044179
000000.000000	-0.173469	0.000000	0.072807	0.075483	-0.326867	-0.151681
000000.000000	-0.132653	0.000000	0.037764	0.130120	-0.221772	-0.370922
000000.000000	-0.091837	0.00000	-0.030657	0.175601	0.042623	-0.533297
	Freq. (MHz) Edit Format View 000000.000000 000000 000000.000000 000000 000000.000000 000000 000000.000000 000000 000000.000000 000000 000000.000000 000000 000000.000000 000000 000000.000000 000000 000000.000000 000000 000000.000000 000000 000000.000000 000000 000000.000000 000000	Freq. (MHz) x(m) Edit Format View Help 000000.000000 -0.500000 000000.000000 -0.459184 000000.000000 -0.418367 000000.000000 -0.336735 000000.000000 -0.295918 000000.000000 -0.255102 000000.000000 -0.173469 000000.000000 -0.132653 000000.000000 -0.091837	Freq. (MHz) x(m) z(m) E_vs_> Edit Format View Help 000000.000000 -0.500000 0.000000 000000.000000 -0.419184 0.000000 000000.000000 -0.377551 0.000000 000000.000000 -0.336735 0.000000 0000000.000000 -0.295918 0.000000 0000000.000000 -0.255102 0.000000 0000000.000000 -0.173469 0.000000 0000000.000000 -0.132653 0.000000	Freq. (MHz) $x(m)$ $z(m)$ $Real(E_x)$ E_vs_xz_FIELD - NotepadEditFormatViewHelp000000.00000-0.5000000.000000-0.028258000000.00000-0.4591840.000000-0.029324000000.000000-0.4183670.000000-0.022069000000.000000-0.3775510.000000-0.06098000000.000000-0.3367350.0000000.016947000000.000000-0.2551020.0000000.043190000000.000000-0.2142860.0000000.079468000000.000000-0.1734690.0000000.037764000000.000000-0.1326530.000000-0.030657	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq. (MHz) x(m) z(m) Real(E_x) Imag(E_x) Real(E_z) E_vs_xz_FIELD - Notepad Edit Format View Help 0000000 -0.500000 0.000000 -0.028258 0.002993 0.093729 0000000.000000 -0.459184 0.000000 -0.029324 -0.012547 0.145006 0000000.000000 -0.418367 0.000000 -0.022069 -0.028614 0.161904 0000000.000000 -0.336735 0.000000 -0.06698 -0.040939 0.131095 0000000.000000 -0.255102 0.000000 0.016947 -0.044938 0.049877 0000000.000000 -0.255102 0.000000 0.043190 -0.036573 -0.070137 0000000.000000 -0.214286 0.000000 0.079468 0.025125 -0.303865 0000000.000000 -0.132653 0.000000 0.037764 0.130120 -0.221772 0000000.000000 -0.132653 0.000000 0.037764 0.130120 -0.221772 0000000.000000 -0.132653 0.000000 0.037764 0.130120 -0.221772 0000000.000000 -0.091837 0.000000 -0.030657 0.175601 0.042623

🔺 Field transmitted into ground: frequency domain integral equation approach – 🗖 🗙						
Α	Antenna paramete	rs	Fre	equenc <mark>y d</mark> oma	iin (FD)	
length 1 ra	adius (mm) 6.74	height (cm) 10	○ Single frequency	Single	point 🔿 xz	grid, multiple F
(Ground parameter	s	Coordinates (m)	START	END	No. points
			x axis	0.5	0.5	1
	Layer1 OL	ayer 2 🕑 Layer 3	z axis	0	2	50
permittivity	10	8 10	Frequency (MHz)	100	150	15
conductivity (mS/m)	0	0 0				
thickness (m)	0.25 0	.3		Time Domain	(TD)	
Run the simulation			O Inverse Fa	ast Fourier Trans	sform (IFFT) to TD	
Method: 🔿 MI	T 🖲 RCA	Run the simulation	time delay (ns)	1.43	time frame (ns	40
			halwidth (ns)	0.667	x (m)	0.5
Results are saved in:	:	Save			z (m)	0.5
FD:	Calculated!		Show Gauss puls	se		
TD:					Save frequer	cy domain field

- -

Cancel

3. E vs. f

33

Single point calculation. – 🗆 🗙	Single point calculation.
Frequency = 107.14 MHz	Frequency = 117.86 MHz

Training School on GPR for civil engineering and cultural heritage management

heritage management

3. E vs. time

Antenna parameters			Frequency domain (FD)			
length 1	radius (mm) 6.74	height (cm) 10	O Single frequency	○ Single	e point 🛛 🤉	kz grid, multiple F
	Ground parameters		Coordinates (m)	START	END	No. points
			x axis	0.5	0.5	1
	O Layer 1 O Laye	r 2 🔍 Layer 3	z axis	0	2	50
permittivity conductivity (mS/m)	10 8 0 0	10	Frequency (MHz)	100	150	15
thickness (m)	0.25 0.3			-	(TD)	
				Time Domai	n (TD)	
	Run the simulation		💽 Inverse F	Time Domai ast Fourier Trar	n (TD) nsform (IFFT) to TI	D
Method: (Run the simulation	Run the simulation	ime delay (ns)	Time Domai ast Fourier Trar 1.43	n (TD) nsform (IFFT) to TI time frame (n	s) 40
Method: (Run the simulation −) ΜΠ	Run the simulation	Inverse F time delay (ns) halwidth (ns)	Time Domai ast Fourier Tran 1.43 0.667	n (TD) 1sform (IFFT) to Ti time frame (n x (r	s) 40 n) 0.5
Method: () Results are save	Run the simulation -	Run the simulation Save	Inverse F time delay (ns) halwidth (ns)	1 ime Domai ast Fourier Trar 1.43 0.667	n (TD) nsform (IFFT) to Ti time frame (n x (n z (n	s) 40 n) 0.5 n) 0.2

Rome, Italy, May 14-18, 2018

35

REFERENCES

[1] D. Poljak, "Advanced Modelling in Computational Electromagnetic Compatibility," John Wiley and Sons, New York 2007.

[2] D. Poljak, V. Dorić, "Transmitted field in the lossy ground from ground penetrating radar (GPR) dipole antenna", Computational Methods and Experimental Measurments XVII 3, WIT Transactions on Modelling and Simulation, Vol 59, pp. 3-11, 2015

[3] A. Šušnjara, D. Poljak, S. Šesnić, V. Dorić "Time Domain Integral Equation versus Frequency Domain Boundary Element model for calculation of Transmitted Electrical Field for Ground Penetrating Radar (GPR) Antenna

[4] A. Šušnjara, D. Poljak, V. Dorić, "Electric Field Radiated By a Dipole Antenna Above a Lossy Half Space: Comparison of Plane Wave Approximation with the Modified Image Theory Approach," SoftCOM conference, Split, 2017

[5] A. Šušnjara, V. Dorić, D. Poljak, "Electric Field Radiated By a Dipole Antenna and Transmitted Into a Two-Layered Lossy Half Space," submitted for SpliTECH conference, Split, 2018