

GPR system performance compliance

Lara Pajewski (Sapienza University of Rome, Italy) Xavier Derobert (IFSTTAR, Nantes, France) Sébastien Lambot (Université catholique de Louvain, Belgium) Milan Vrtunski, Željko Bugarinović, Aleksandar Ristić, Miro Govedarica (FTS, Novi Sad, Serbia) Carl Van Geem, Audrey van der Wielen, Colette Grégoire (BRRC, Brussels, Belgium) Vladislav Borecky (University of Pardubice, Czech Republic) Salih Serkan Artagan (Anadolu University, Turkey) Simona Fontul, Vânia Marecos (LNEC, Lisbon, Portugal)

COST is supported by the EU Framework Programme Horizon2020

GPR system performance compliance

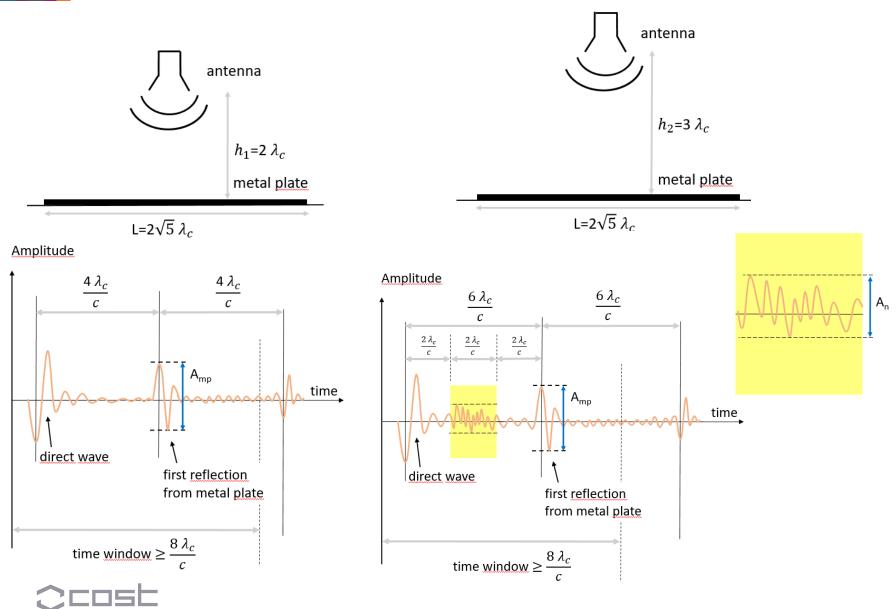
- GPR systems shall be periodically calibrated and their performance verified, in accordance with the manufacturer's recommendations and specifications.
- Within the framework of COST TU1208 Action, guidelines for procedures to test the performance of GPR equipment were defined. Guidelines are oriented towards performance of GPR antennas.

GPR system performance compliance

- The following slides describe four tests, which can be periodically carried out to check the performance of GPR systems.
- Common parameters for all tests:
 - 1. Warm-up time at least 30 minutes or according to recommendations by the manufacturer
 - 2. Size of square metal reflector $L = 2\sqrt{5}\cdot\lambda_c$, where $\lambda_c = c/f_c$ is the wavelength at the central frequency, being *c* the light velocity in the air.

COST is supported by the EU Framework Programme Horizon2020

Test 1: Signal-to-Noise ratio (1/4)


- Two series of measurements, at two different distances between the metal plate and the antenna.
- The first series:
 - The distance is $h_1 = 2\lambda_c$
 - The time window (TW): at least twice the two-way travel time from the antenna to the metal plate (TW>8 λ_c /c).
 - 100 waveforms.
 - The average amplitude $\langle A_{mp} \rangle$ has to be evaluated: this quantity is defined as the average peak-to-peak amplitude of the first echo coming from the metal plate.

Test 1: Signal-to-Noise ratio (2/4)

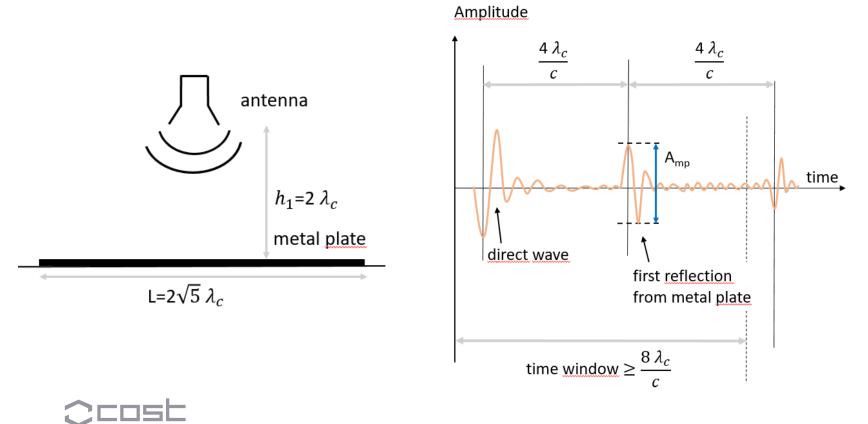
- The second series of measurements
 - The distance: $h_2 = 3\lambda_c$.
 - The GPR setting parameters the same as in the first series.
 - 100 waveforms.
 - The average amplitude $\langle A_n \rangle$ has to be evaluated: this quantity is defined as the average peak-to-peak amplitude of the noise, over a relevant time window.
 - The suggested relevant time window starts $2\lambda_c/c$ [s] after the absolute maximum amplitude of the signal.
 - The suggested relevant time window is $2\lambda_c/c$ [s] long.

Test 1: Signal-to-Noise ratio (3/4)

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Test 1: Signal-to-Noise ratio (4/4)

An indicator of the signal-to-noise ratio can finally be calculated, by using the following equation:


$$Indicator_{SNR} = \frac{\langle A_{\rm mp} \rangle}{\langle A_{\rm n} \rangle}$$

This quantity (which is not the SNR), should be larger than 20 (+26.0 dB).

Test 2: Signal stability (1/2)

- The same test configuration as in test 1, with h_1 .
- The time window (TW) at least twice the two-way travel time (TW>8 λ_c /c).
- Record 100 traces at the maximum data acquisition rate.

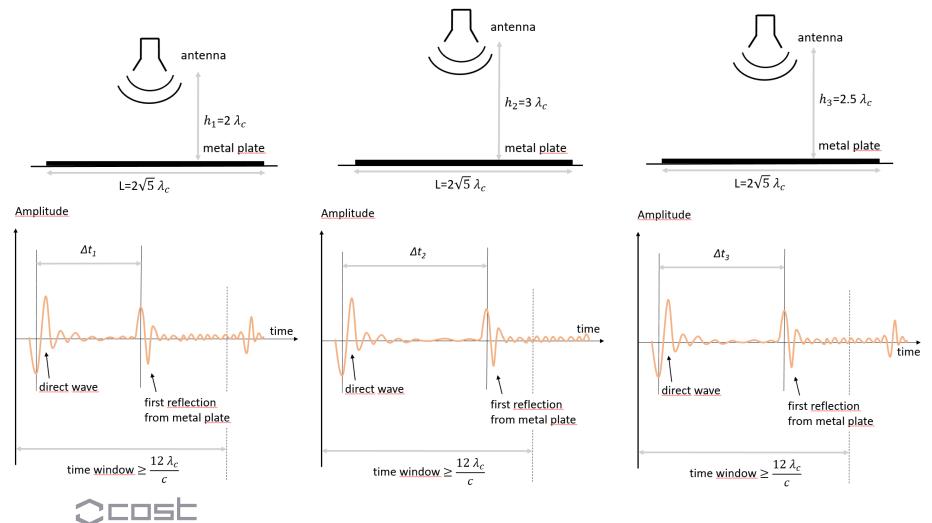
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Test 2: Signal stability (2/2)

 The signal stability has to be evaluated using the following formula:

$$Stability = \frac{A_{\max} - A_{\min}}{A_{\text{avg}}}$$

- A_{max} is the maximum peak-to-peak amplitude of the metal plate reflection, selected among all 100 recorded traces
- A_{min} is the minimum peak-to-peak amplitude of the metal plate reflection, selected among all 100 traces
- A_{avg} is the average trace peak-to-peak amplitude of the metal plate reflection of all 100 traces.
- The signal stability has to be less than 1 %.



Test 3: Linearity in the time axis (1/3)

- The same test configurations as described in test 1.
- Third configuration with $h_3 = 2.5\lambda_c$.
- The time window (TW) should be at least twice the two-way travel time, at the longest distance h_2 (TW>12 λ_c/c).
- A single waveform per configuration.
- For each configuration i (i = 1, 2, 3), corresponding to h_i , the time delay Δt_i has to be determined.
- The time delay is defined as the difference between the absolute maximum amplitude of the direct wave and the absolute maximum amplitude of the echo coming from the metal plate.

Test 3: Linearity in the time axis (2/3)

• The absolute differences: $T_{21} = |\Delta t_2 - \Delta t_1|$; $T_{31} = |\Delta t_3 - \Delta t_1|$

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Test 3: Linearity in the time axis (3/3)

• The corresponding speed factors C₂₁ and C₃₁:

 $C \downarrow 21 = h \downarrow 2 - h \downarrow 1 / C \downarrow 31 = h \downarrow 3 - h \downarrow 1 / T \downarrow 31$ $T \downarrow 21$

• The relative variation in the measured speed can be evaluated as follows:

Speed factor =
$$\frac{2|C_{21} - C_{31}|}{C_{21} + C_{31}}$$

• The speed factor should be less than 0.02 (2%).

Test 4: Long-term stability (1/3)

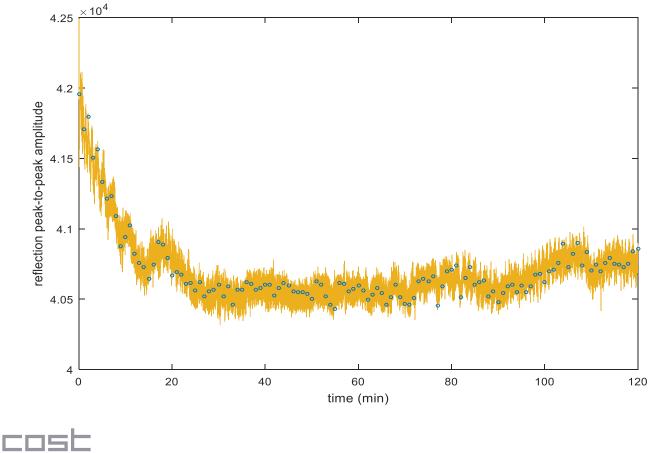
- The same test configuration as described in Test 1, with h_1 .
- The time window (TW) should at least twice the two-way travel time (TW>8 λ_c /c).
- 10 waveforms have to be captured every 1 min, for 120 min (hence, 1200 traces have to be recorded in total).
- For each waveform w (w = 1, ..., 1200) the peak-to-peak amplitude A_w of the echo from the metal plate has to be determined.

Test 4: Long-term stability (2/3)

• The sliding-average amplitudes M_q (q = 1, ..., 1200 – (N – 1)) have to be calculated, by using the following equation:

$$M_q = \frac{1}{N} \sum_{h=0}^{N-1} A_{q+h}$$

- N = 10 is suggested.
- The long-term stability factor is the maximum between the following two quantities:


$$Q_1 = \frac{M_{\max} - A_1}{A_1}$$
 $Q_2 = \frac{|M_{\min} - A_1|}{A_1}$

- $M_{\rm max}$ and $M_{\rm min}$ are the largest and smallest values, respectively, among the $M_{\rm q}$ values.
- For N = 10, the long-term stability factor should be less than 3 %.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY The Final Conference of COST TU1208, Warsaw, 2017.

Test 4: Long-term stability (3/3)

 It is useful to plot M_q against time (or simply, as a function of q). Realizing such a graph helps to gain awareness about the behaviour of the GPR system over time.

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Tested antennas

Institution	Antennas	Tests	Remarks
Faculty of Technical Sciences Novi Sad Serbia	Ground coupled GSSI 400MHz GSSI 900MHz	Tests 1, 2, 3, 4	
Belgium Road Research Centre Brussels Belgium	Horn GSSI 1GHz GSSI 2GHz	Tests 1, 2, 3, 4	Tests performed on raw and filtered data
University of Pardubice Pardubice Czech Republic	Horn IDS 2GHz	Tests 2, 3, 4	Tests performed several times, not strictly to COST guidelines
National Laboratory for Civil Engineering Lisbon Portugal	Horn GSSI 1GHz GSSI 1.8GHz	Tests 1, 2	Tests performed on raw and filtered data, at different samples per trace

GPR antennas testing at **FTS**

- At Faculty of Technical Sciences testing of two antennas was done:
 - Ground coupled shielded antennas, manufactured by GSSI.
 - Central frequencies: 400MHz and 900MHz.
- Experimental setup:
 - Control unit GSSI SIR3000, with Terra SIRch software.
 - Sidelength of the metal reflector:
 - 3.5m (400MHz antenna)
 - 1.7m (900MHz antenna).
 - Samples per trace: 512
- Data processing: RADAN, MatGPR and MATLAB.
- Testing carried out by Željko Bugarinović and Milan Vrtunski.

GPR antennas testing at FTS 400MHz antenna

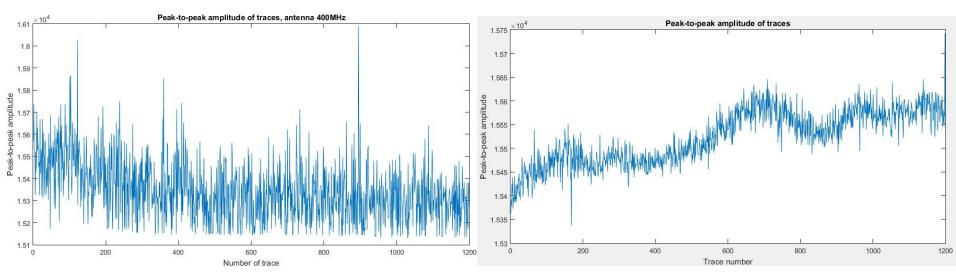
GPR antennas testing at FTS GPR setting parameters

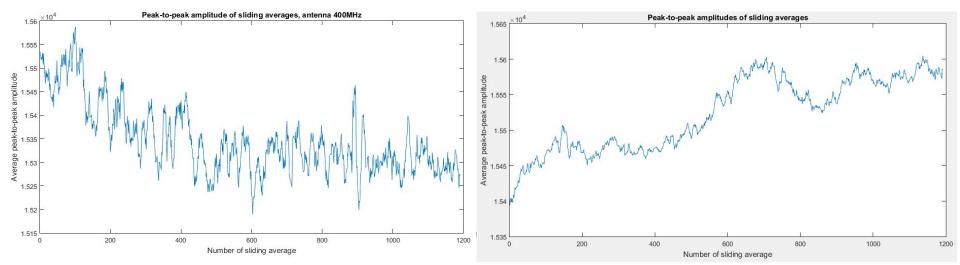
Test 1		Test 2		Test 3		Test 4		
Measurement 1	1			Measurem	ent 1			400MHz
Height	1.50m	Height	1.50m	Height	1.50m	Height	1.50m	
Two-way travel time	10ns	Two-way travel time	10ns	Time window	30ns	Time window	20	
Time window	20ns	Time window	20ns	Traces	1	Traces/sec	1	
Traces/sec	10	Traces/sec	60	Measurem	ent 2	Traces	7200	
Traces	100	Traces	100	Height	2.25m			
Measurement	2			Time window	30ns	·		
Height	2.25m			Traces	1			
Two-way travel time	10ns			Measurem	ent 3			
Time window start	5ns			Height	1.875m			
Time window length	5ns			Time window	30ns			
Traces/sec	10			Traces	1			
Traces	100							

Test 1	,	Test 2	,	Test 3		Test 4	ł
Measurement :	1			Measurem	Measurement 1		
Height	0.66m	Height	0.66m	Height	0.66m	Height	0.66m
Two-way travel time	4.4ns	Two-way travel time	4.4ns	Time window	15ns	Time window	10
Time window	10ns	Time window	10ns	Traces	1	Traces/sec	1
Traces/sec	10	Traces/sec	60	Measurement 2		Traces	7200
Traces	100	Traces	100	Height	0.99m		
Measurement	2		<u> </u>	Time window	15ns		
Height	0.99m		,	Traces	1		
Two-way travel time	6.6ns		,	Measureme	ent 3		
Time window start	2.2ns		,	Height	0.825m		
Time window length	2.2ns		,	Time window	15ns	-	ļ
Traces/sec	10		,	Traces	1		
Traces	100		,				

900MHz

GPR antennas testing at FTS Results


		400MHz	900MHz
Test 1	Signal to Noise Ratio	10.576	12.479
Test 2	Signal Stability	7.914 %	2.879 %
Test 3	Linearity in the time axis	5.18 %	2.99 %
Test 4	Long -term Signal Stability	2.44 %	1.574 %



GPR antennas testing at FTS Test 4 - plots

900MHz

400MHz

GPR antennas testing at **BRRC**

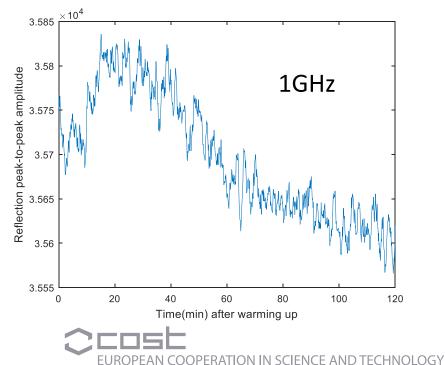
- At Belgium Road Research Centre testing of two antennas was done:
 - Horn antennas, manufactured by GSSI.
 - Central frequencies: 1GHz and 2GHz.
- Experimental setup:
 - Control unit GSSI SIR20
 - Sidelength of the metal reflector: 1.5m for both antennas
- Testing carried out by Colette Grégoire, Carl Van Geem and Audrey van der Wielen.

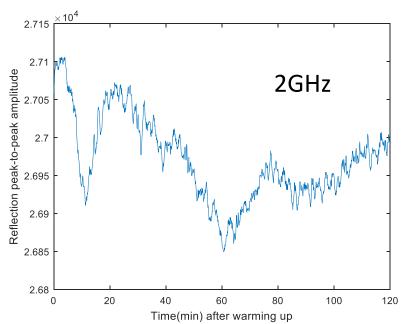
GPR antennas testing at BRRC Test 1 - results

Characteristics of GPR and antenna	Characteristics of the setup	Results (SNR)
2 GHz Horn Time window = 10 ns 512 samples per trace	h1=29.5 cm h2=45.15 cm metal plate dimensions: 150 *150 cm	16.2086
2 GHz Horn Time window = 10 ns 512 samples per trace	h1=29.5 cm h2=45.15 cm metal plate dimensions: 150 *150 cm FIR filter (250-5000 MHz)	17.4542
2 GHz Horn Time window = 10 ns 512 samples per trace	h1=29.5 cm h2=45.15 cm metal plate dimensions: 150 *150 cm GSSI Noise filter	21.9950
1 GHz Horn Time window = 20 ns 512 samples per trace	h1=59.37 cm h2=89.9 cm metal plate dimensions: 150 *150 cm	7.2380
1 GHz Horn Time window = 20 ns 512 samples per trace	h1=59.37 cm h2=89.9 cm metal plate dimensions: 150 *150 cm FIR filter (250-3000 MHz)	9.7012

GPR antennas testing at BRRC Test 2 - results

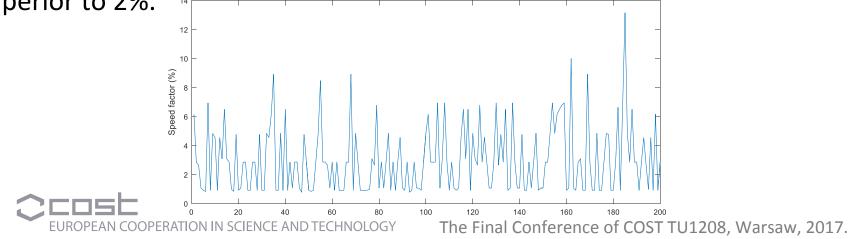
Characteristics of GPR and antenna	Characteristics of the setup	Results (Signal stability, %)
2 GHz Horn Time window = 10 ns 512 samples per trace	h1=29.5 cm metal plate dimensions: 150 *150 cm	4.51 %
2 GHz Horn Time window = 10 ns 512 samples per trace	h1=29.5 cm metal plate dimensions: 150 *150 cm FIR filter (250-5000 MHz)	3.10 %
2 GHz Horn Time window = 10 ns 512 samples per trace	h1=29.5 cm metal plate dimensions: 150 *150 cm GSSI Noise filter	2.54 %
1 GHz Horn Time window = 20 ns 512 samples per trace	h1=59.37 cm metal plate dimensions: 150 *150 cm	10.61%
1 GHz Horn Time window = 20 ns 512 samples per trace	h1=59.37 cm metal plate dimensions: 150 *150 cm FIR filter (250-3000 MHz)	10.96%


GPR antennas testing at BRRC Test 3 - results


Characteristics of GPR and antenna	Characteristics of the setup	Results (Variation in time calibration factor, %)
2 GHz Horn Time window = 10 ns 512 samples per trace	h1=29.5 cm h2=45.15 cm h3=37.25 cm metal plate dimensions: 150 *150 cm	(0.91%-17.6%) Mean: 6.29%
2 GHz Horn Time window = 10 ns 512 samples per trace	h1=29.5 cm h2=45.15 cm h3=37.25 cm metal plate dimensions: 150 *150 cm FIR filter (250-5000 MHz)	8.94% (0.87-11.29%) Mean: 3.91%
2 GHz Horn Time window = 10 ns 512 samples per trace	h1=29.5 cm h2=45.15 cm h3=37.25 cm metal plate dimensions: 150 *150 cm GSSI Noise filter	(0.94-7.04%) Mean: 4.56%
1 GHz Horn Time window = 20 ns 512 samples per trace	h1=59.37 cm h2=89.9 cm h3=75 cm metal plate dimensions: 150 *150 cm	(0%-15.12%) Mean: 4.26%
1 GHz Horn Time window = 20 ns 512 samples per trace	h1=59.37 cm h2=89.9 cm h3=75 cm metal plate dimensions: 150 *150 cm FIR filter (250-3000 MHz)	0.34%-10.69% Mean: 3.17%

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

GPR antennas testing at BRRC Test 4 - results


N° d'essai	Antenne	Date+ lieu + T°	L plaque	Hauteur (cm) (th + mesurée)	Samples / trace	Time window	Calibration time factor
STAB014	2 GHz	27/02/17, 19.0°C	150 cm	30	512	10	0.69 %
STAB015	2 GHz (idem précédent)	28/02/17, 18.4°C	150 cm	30	512	10	0.72 %
STAB016	2 GHz + filtre	01/03/17, 19.1°C	150 cm	30	512	10	0.65 %
TEXS001	1 GHz	28/07/17, 23.6°C	150 cm	60	512	20	0.92%

GPR antennas testing at BRRC Remarks

- The maximum amplitude of the direct wave is not the absolute maximum amplitude of the signal. The amplitude on the metallic plate is always stronger than the direct wave amplitude.
- The first collected sample has always a random value, which can be larger than any reflection.
- The results of test 3 seem to be highly variable and dependent on the laboratory precision. For 200 traces of the same measurement it varies from 0.9% to 17.6% (for the same configuration)! An error of 1 mm in the measurement of the antenna position can result in an error superior to 2%.

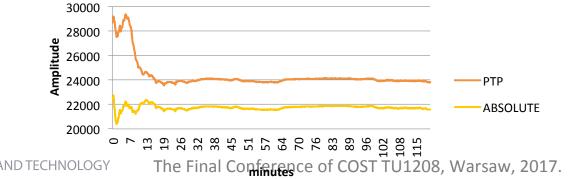
GPR antennas testing at Univ. of Pardubice, Czech Republic

- At University of Pardubice testing of one antenna was done:
 - Horn antenna, 2GHz, manufactured by IDS.
- Experimental setup:
 - IDS RIS Hi-Pave, DAD MCH Fast-Wave control unit
 - Sidelength of the metal reflector: 1m
 - 15ns time window, 512 samples per trace
- Testing carried out by Vladislav Borecky and Salih Serkan Artagan.

GPR antennas testing at University of Pardubice Test 2 - results

Characteristics of GPR and antenna	Characteristics of the setup	Results (Signal stability, %)
2 GHz Horn Time window = 15 ns 512 samples per trace	h1=30 cm metal plate dimensions: 100*100 cm	0.9 %
2 GHz Horn Time window = 15 ns 512 samples per trace	h1=30 cm metal plate dimensions: 100*100 cm	0.4 %
2 GHz Horn Time window = 15 ns 512 samples per trace	h1=30 cm metal plate dimensions: 100*100 cm	1.2 %
2 GHz Horn Time window = 15 ns 512 samples per trace	h1=30 cm metal plate dimensions: 100*100 cm	0.8%

GPR antennas testing at University of Pardubice Test 3 - results


Characteristics of GPR and antenna	Characteristics of the setup	Results (Variation in time calibration factor, %)
2 GHz Horn Time window = 15 ns 512 samples per trace	h1=34 cm h2=68 cm h3=113 cm (distances according to ASTM) metal plate dimensions: 100 *100 cm	10.5 % - 12.5 %

GPR antennas testing at University of Pardubice Test 4 - results

Characteristics of GPR and antenna	Characteristics of the setup	Results (Long Term Signal stability, %)
2 GHz Horn	h1=30 cm	
Time window = 15 ns 512 samples per trace	metal plate dimensions: 100*100 cm	0.5 %
2 GHz Horn	h1=30 cm	
Time window = 15 ns	metal plate dimensions:	0.0 %
512 samples per trace	100*100 cm	0.0 /0
2 GHz Horn	h1=30 cm	
Time window = 15 ns	metal plate dimensions:	0.6 %
512 samples per trace	100*100 cm	0.0 /8
2 GHz Horn	h1=30 cm	
Time window = 15 ns	metal plate dimensions:	0.27%
512 samples per trace	100*100 cm	0.2770

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

GPR antennas testing at LNEC

- At National Laboratory for Civil Engineering in Lisbon, testing of two antennas was done:
 - Horn antennas, manufactured by GSSI.
 - Central frequencies: 1GHz and 1.8GHz.
- Experimental setup:
 - Control unit GSSI SIR20
 - Sidelength of the metal reflector: <u>2x1m</u> for both antennas
 - Raw and filtered data
 - Samples/trace: 512,1024 (1.8GHz); 256, 1024 (1GHz)
- Testing carried out by Simona Fontul and Vânia Marecos.

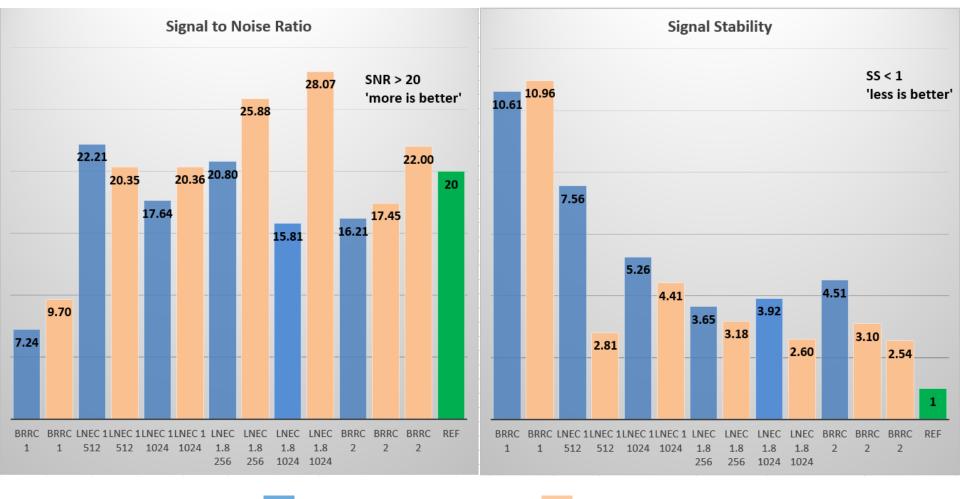
GPR antennas testing at LNEC

GPR antennas testing at LNEC Test 1 - results

Characteristics of GPR and antenna	Characteristics of the setup	Re	esults (SNR)
1 GHz Horn Time window = 20 ns	h1=60.5 cm h2=90 cm	raw	22.2082
512 samples per trace	metal plate dimensions: 200 *100 cm IIR: 100-1000MHz FIR: 500-3000MHz	filtered	20.3498
1 GHz Horn Time window = 20 ns 1024 samples per trace	h1=60.5 cm h2=90 cm metal plate dimensions: 200 *100 cm	raw	17.6366
	IIR: 100-1000MHz FIR: 500-3000MHz	filtered	20.3631
1.8 GHz Horn Time window = 10 ns	h1=33.2 cm h2=49.5 cm	raw	20.8047
256 samples per trace	metal plate dimensions: 200 *100 cm IIR: 100-2000MHz FIR: 500-5000MHz	filtered	25.8752
1.8 GHz Horn Time window = 10 ns	h1=33.2 cm h2=49.5 cm	raw	15.8056
1024 samples per trace	metal plate dimensions: 200 *100 cm IIR: 100-2000MHz FIR: 500-5000MHz	filtered	28.0741

GPR atnennas testing at LNEC Test 2 - results

Characteristics of GPR and antenna	Characteristics of the setup h1=60.5 cm metal plate dimensions: 200 *100 cm IIR: 100-1000MHz FIR: 500-3000MHz	Results (SST)	
1 GHz Horn Time window = 20 ns		raw	7.56%
512 samples per trace		filtered	4.08%
1 GHz Horn Time window = 20 ns	h1=60.5 cm metal plate dimensions: 200 *100 cm	raw	7.42%
1024 samples per trace	IIR: 100-1000MHz FIR: 500-3000MHz	filtered	4.41%
1.8 GHz Horn Time window = 10 ns	h1=33.2 cm metal plate dimensions: 200 *100 cm	raw	3.65%
256 samples per trace	IIR: 100-2000MHz FIR: 500-5000MHz	filtered	3.18%
1.8 GHz Horn Time window = 10 ns 1024 samples per trace	h1=33.2 cm metal plate dimensions: 200 *100 cm IIR: 100-2000MHz FIR: 500-5000MHz	raw	3.92%
		filtered	2.60%

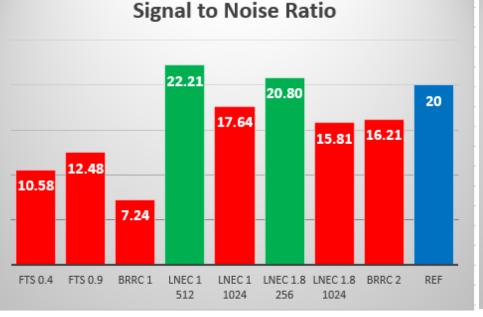


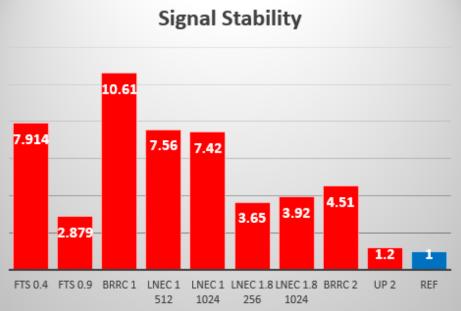
Summary

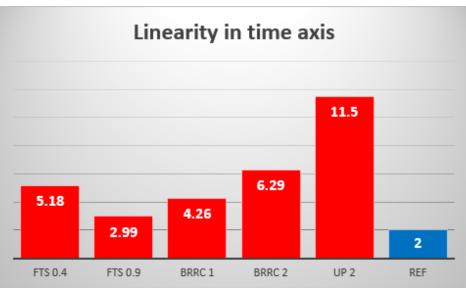
	Antenna	Filter	Signal to Noise Ratio	Signal Stability	Linearity in time axis	Long Term Stability
1	FTS 0.4	Raw	10.576	7.914	5.18	2.44
2	FTS 0.9	Raw	12.479	2.879	2.99	1.574
3	BRRC 1	Raw	7.238	10.61	4.26	0.92
4	BRRC 1	FIR	9.7012	10.96	3.17	
5	LNEC 1	Raw	17.6366	5.26		
6	LNEC 1	FIR IIR	20.3498	2.81		
7	LNEC 1.8	Raw	15.8056	3.89		
8	LNEC 1.8	FIR IIR	28.0741	1.59		
9	BRRC 2	Raw	16.2086	4.51	6.29	0.69
10	BRRC 2	FIR	17.4542	3.1	3.91	0.65
11	BRRC 2	GSSI NF	21.995	2.54	4.56	
12	UP 2	Raw		1.2	11.5	0.6

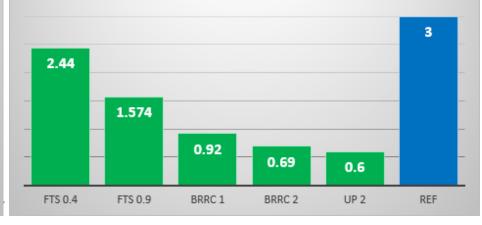
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Usage of filters




- raw data


- filtered data


EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Tresholds?

Long Term Stability

Tresholds?

- After the testing performed by various COST participants proposed values are:
 - Test 1: Signal-to-Noise Ratio > 10 (20dB)
 - Test 2: Signal Stability < 8%
 - Test 3: Linearity in the Time Axis < 6.5%
 - Test 4: Long-Term Signal Stability < 2.5%
- Before these values are accepted as the final ones:
 - Tests could be repeated
 - More antennas could be tested
 - Check the history of tested antennas
 - Test brand new antennas...

Thank you!

milanv@uns.ac.rs

COST is supported by the EU Framework Programme Horizon2020