

Action TU1208 Civil Engineering Applications of Ground Penetrating Radar

Final Conference

Warsaw, Poland 25-27 September 2017

National Institute of Telecommunications of Poland Development and testing of a new lightweight radar system for tomographical reconstruction of circular structures

Sébastien Lambot, Jana Ježová (Belgium), <u>Alessandro Fedeli</u>, Matteo Pastorino, and Andrea Randazzo (Italy)

alessandro.fedeli@edu.unige.it

Talk Layout

- Introduction and motivation
- System design: > Description of the radar system
 > Antenna design and modeling
- Experimental results:
- Sand box measurements
 Circular cylinder with inclusion

Conclusions

Introduction and motivation

- New applications of GPR need small and efficient measurement systems
- An accurate modeling of the physical effects between GPR antenna and soil interface is fundamental
- Growing interest for advanced data processing techniques for GPR
- Non-invasive investigation of cylindrical structures (e.g., tree trunks)

Radar system design and antenna modeling

Description of the developed radar system and antenna

Tomographic radar system design

- Custom antenna design
- Vector network analyzer measuring the complex reflection coefficient
- Acquired data are
 preprocessed by using
 calibration techniques
 developed at UCL
- Tomographic inversion methods developed at UNIGE are applied

Antenna modeling and calibration

 The antenna modeling and calibration technique proposed by Lambot *et al.* [1] is used

 Example: removal of source effects and direct TX-RX coupling in gprMax simulated data

[1] S. Lambot, E. C. Slob, I. van den Bosch, B. Stockbroeckx, and M. Vanclooster, "Modeling of ground-penetrating Radar for accurate characterization of subsurface electric properties," IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 11, pp. 2555–2568, Nov. 2004.

Experimental results

Detection of cylindrical targets in sand box and in free space

Measurements with sand box

- Sand box properties
 - Parallelepiped with side length
 s = 3 m and height h = 1 m
 - Filled with dry sand
 - 3 m × 3 m metal plate at the bottom of the box
- First test set
 - Circular metallic rebar of length $l_1 = 2.5$ m and diameter $d_1 = 0.03$ m, $z_1 = 0.1$ m deep
 - Empty PVC tube $l_2 = 0.9$ m long, characterized by a diameter $d_2 =$ 0.08 m, thickness $t_2 = 0.0018$ m, and depth $z_2 = 0.085$ m.
- B-scans acquired with different antennas and distances from soil

PVC tube during burial

GPR antenna

B-scans of the test set

Raw GPR data

Calibrated GPR data

- First test set configuration in sand box
- Considered frequency range: 800 MHz 3 GHz
- Distance between antenna aperture and soil level d = 0.15 m
- B-scan length L = 2.4 m (241 measurement points spaced by 1 cm)
 - [1] A. Fedeli, J. Ježová, S. Lambot, M. Pastorino, A. Randazzo, and L. Pajewski, "Tomographic reconstruction of structures using a novel GPR system," in *Geophysical Research Abstracts, European Geosciences Union (EGU) General Assembly 2017*, April 23-28, 2017, Vienna, Austria, vol. 19, article ID EGU2017-18265.

Circular cylinder with void inclusion

PVC tube

- Outer structure: paper cylinder with diameter $d_o = 0.82$ m
- Inner inclusion: one void PVC tube with diameter $d_i = 0.4 \text{ m}$
- Internal space filled with sand
- GPR measurements acquired with counterclockwise direction
- Angular spacing between measurement points $\Delta \phi = 5.6^{\circ}$
- Different antennas and distances from the outer cylinder

GPR antenna

[1] J. Ježová, S. Lambot, A. Fedeli, and A. Randazzo, "Ground-penetrating radar for tree trunk investigation", in *9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR 2017)*, Edinburgh, UK, June 28-30, 2017.

B-scan around the circular cylinder

[1] J. Ježová, S. Lambot, A. Fedeli, and A. Randazzo, "Ground-penetrating radar for tree trunk investigation", in *9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR 2017)*, Edinburgh, UK, June 28-30, 2017.

Conclusions

- Cooperation between the Georadar Research Centre at the Université catholique de Louvain and the Applied Electromagnetics Group at the University of Genoa
- Experimental activities, testing different antennas and configurations of a new GPR system
 - Calibration of acquired data with an accurate model
 - Tomographic inversion
- Further activities
 - Integration of more advanced antenna models
 - Full-waveform inversion